Add upload to dataset
Browse files- utils/upload_to_dataset.py +89 -0
utils/upload_to_dataset.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import Dataset, Features, Value, Image
|
2 |
+
from huggingface_hub import HfApi
|
3 |
+
import os
|
4 |
+
from collections import defaultdict
|
5 |
+
import pandas as pd
|
6 |
+
import argparse
|
7 |
+
|
8 |
+
def upload_to_dataset(original_images_dir, processed_images_dir, dataset_name, dry_run=False):
|
9 |
+
# Define the dataset features with dedicated columns for each model
|
10 |
+
features = Features({
|
11 |
+
"original_image": Image(), # Original image feature
|
12 |
+
"clipdrop_image": Image(), # Clipdrop segmented image
|
13 |
+
"bria_image": Image(), # Bria segmented image
|
14 |
+
"photoroom_image": Image(), # Photoroom segmented image
|
15 |
+
"removebg_image": Image(), # RemoveBG segmented image
|
16 |
+
"original_filename": Value("string") # Original filename
|
17 |
+
})
|
18 |
+
|
19 |
+
# Load image paths and metadata
|
20 |
+
data = defaultdict(lambda: {
|
21 |
+
"clipdrop_image": None,
|
22 |
+
"bria_image": None,
|
23 |
+
"photoroom_image": None,
|
24 |
+
"removebg_image": None
|
25 |
+
})
|
26 |
+
|
27 |
+
# Walk into the original images folder
|
28 |
+
for root, _, files in os.walk(original_images_dir):
|
29 |
+
for f in files:
|
30 |
+
if f.endswith(('.png', '.jpg', '.jpeg')):
|
31 |
+
original_image_path = os.path.join(root, f)
|
32 |
+
data[f]["original_image"] = original_image_path
|
33 |
+
data[f]["original_filename"] = f
|
34 |
+
|
35 |
+
# Check for corresponding images in processed directories
|
36 |
+
for source in ["clipdrop", "bria", "photoroom", "removebg"]:
|
37 |
+
# Check for processed images ending in .png or .jpg
|
38 |
+
for ext in ['.png', '.jpg']:
|
39 |
+
processed_image_filename = os.path.splitext(f)[0] + ext
|
40 |
+
source_image_path = os.path.join(processed_images_dir, source, processed_image_filename)
|
41 |
+
|
42 |
+
if os.path.exists(source_image_path):
|
43 |
+
data[f][f"{source}_image"] = source_image_path
|
44 |
+
break # Stop checking other extensions if a file is found
|
45 |
+
|
46 |
+
# Convert the data to a dictionary of lists
|
47 |
+
dataset_dict = {
|
48 |
+
"original_image": [],
|
49 |
+
"clipdrop_image": [],
|
50 |
+
"bria_image": [],
|
51 |
+
"photoroom_image": [],
|
52 |
+
"removebg_image": [],
|
53 |
+
"original_filename": []
|
54 |
+
}
|
55 |
+
|
56 |
+
for filename, entry in data.items():
|
57 |
+
if "original_image" in entry:
|
58 |
+
dataset_dict["original_image"].append(entry["original_image"])
|
59 |
+
dataset_dict["clipdrop_image"].append(entry["clipdrop_image"])
|
60 |
+
dataset_dict["bria_image"].append(entry["bria_image"])
|
61 |
+
dataset_dict["photoroom_image"].append(entry["photoroom_image"])
|
62 |
+
dataset_dict["removebg_image"].append(entry["removebg_image"])
|
63 |
+
dataset_dict["original_filename"].append(filename)
|
64 |
+
|
65 |
+
# Save the data dictionary to a CSV file for inspection
|
66 |
+
df = pd.DataFrame.from_dict(dataset_dict)
|
67 |
+
df.to_csv("image_data.csv", index=False)
|
68 |
+
|
69 |
+
# Create a Dataset
|
70 |
+
dataset = Dataset.from_dict(dataset_dict, features=features)
|
71 |
+
|
72 |
+
if dry_run:
|
73 |
+
print("Dry run: Dataset prepared but not pushed to Hugging Face Hub.")
|
74 |
+
print(df.head()) # Display the first few rows for inspection
|
75 |
+
else:
|
76 |
+
# Push the dataset to Hugging Face Hub in a private way
|
77 |
+
api = HfApi()
|
78 |
+
dataset.push_to_hub(dataset_name, token=api.token, private=True)
|
79 |
+
|
80 |
+
if __name__ == "__main__":
|
81 |
+
parser = argparse.ArgumentParser(description="Upload images to a Hugging Face dataset.")
|
82 |
+
parser.add_argument("original_images_dir", type=str, help="Directory containing the original images.")
|
83 |
+
parser.add_argument("processed_images_dir", type=str, help="Directory containing the processed images with subfolders for each model.")
|
84 |
+
parser.add_argument("dataset_name", type=str, help="Name of the dataset to upload to Hugging Face Hub.")
|
85 |
+
parser.add_argument("--dry-run", action="store_true", help="Perform a dry run without uploading to the hub.")
|
86 |
+
|
87 |
+
args = parser.parse_args()
|
88 |
+
|
89 |
+
upload_to_dataset(args.original_images_dir, args.processed_images_dir, args.dataset_name, dry_run=args.dry_run)
|