# This code is copied from the following source: # https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/monitor/rating_systems.py import math import pandas as pd import numpy as np from sqlalchemy.orm import Session import pandas as pd from scipy.special import expit def get_matchups_models(df): n_rows = len(df) model_indices, models = pd.factorize(pd.concat([df["model_a"], df["model_b"]])) matchups = np.column_stack([model_indices[:n_rows], model_indices[n_rows:]]) return matchups, models.to_list() def preprocess_for_elo(df): """ in Elo we want numpy arrays for matchups and outcomes matchups: int32 (N,2) contains model ids for the competitors in a match outcomes: float64 (N,) contains 1.0, 0.5, or 0.0 representing win, tie, or loss for model_a """ matchups, models = get_matchups_models(df) outcomes = np.full(len(df), 0.5) outcomes[df["winner"] == "model_a"] = 1.0 outcomes[df["winner"] == "model_b"] = 0.0 return matchups, outcomes, models def compute_elo(df, k=4.0, base=10.0, init_rating=1000.0, scale=400.0): matchups, outcomes, models = preprocess_for_elo(df) alpha = math.log(base) / scale ratings = np.full(shape=(len(models),), fill_value=init_rating) for (model_a_idx, model_b_idx), outcome in zip(matchups, outcomes): prob = 1.0 / ( 1.0 + math.exp(alpha * (ratings[model_b_idx] - ratings[model_a_idx])) ) update = k * (outcome - prob) ratings[model_a_idx] += update ratings[model_b_idx] -= update return {model: ratings[idx] for idx, model in enumerate(models)} def compute_bootstrap_elo( df, num_round=1000, k=4.0, base=10.0, init_rating=1000.0, scale=400.0 ): matchups, outcomes, models = preprocess_for_elo(df) sample_indices = np.random.randint(low=0, high=len(df), size=(len(df), num_round)) ratings = fit_vectorized_elo( matchups, outcomes, sample_indices, len(models), k, base, init_rating, scale ) df = pd.DataFrame(data=ratings, columns=models) return df[df.median().sort_values(ascending=False).index] def fit_vectorized_elo( matchups, outcomes, sample_indices, num_models, k=4.0, base=10.0, init_rating=1000.0, scale=400.0, ): """fit multiple sets of Elo ratings on different samples of the data at the same time""" alpha = math.log(base) / scale num_samples = sample_indices.shape[1] ratings = np.zeros(shape=(num_samples, num_models), dtype=np.float64) # iterate over the rows of sample_indices, each column is an index into a match in the input arrays sample_range = np.arange(num_samples) for matchup_indices in sample_indices: model_a_indices = matchups[matchup_indices, 0] model_b_indices = matchups[matchup_indices, 1] model_a_ratings = ratings[sample_range, model_a_indices] model_b_ratings = ratings[sample_range, model_b_indices] sample_outcomes = outcomes[matchup_indices] probs = expit(alpha * (model_a_ratings - model_b_ratings)) updates = k * (sample_outcomes - probs) ratings[sample_range, model_a_indices] += updates ratings[sample_range, model_b_indices] -= updates return ratings + init_rating def get_median_elo_from_bootstrap(bootstrap_df): median = dict(bootstrap_df.quantile(0.5)) median = {k: int(v + 0.5) for k, v in median.items()} return median