# This code is copied from the following source: # https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/monitor/rating_systems.py import math import pandas as pd import numpy as np from sqlalchemy.orm import Session import pandas as pd def get_matchups_models(df): n_rows = len(df) model_indices, models = pd.factorize(pd.concat([df["model_a"], df["model_b"]])) matchups = np.column_stack([model_indices[:n_rows], model_indices[n_rows:]]) return matchups, models.to_list() def preprocess_for_elo(df): """ in Elo we want numpy arrays for matchups and outcomes matchups: int32 (N,2) contains model ids for the competitors in a match outcomes: float64 (N,) contains 1.0, 0.5, or 0.0 representing win, tie, or loss for model_a """ matchups, models = get_matchups_models(df) outcomes = np.full(len(df), 0.5) outcomes[df["winner"] == "model_a"] = 1.0 outcomes[df["winner"] == "model_b"] = 0.0 return matchups, outcomes, models def compute_elo(df, k=4.0, base=10.0, init_rating=1000.0, scale=400.0): matchups, outcomes, models = preprocess_for_elo(df) alpha = math.log(base) / scale ratings = np.full(shape=(len(models),), fill_value=init_rating) for (model_a_idx, model_b_idx), outcome in zip(matchups, outcomes): prob = 1.0 / ( 1.0 + math.exp(alpha * (ratings[model_b_idx] - ratings[model_a_idx])) ) update = k * (outcome - prob) ratings[model_a_idx] += update ratings[model_b_idx] -= update return {model: ratings[idx] for idx, model in enumerate(models)} def compute_elo_from_votes(db: Session): # Retrieve all votes from the database votes = db.query(Vote).all() # Convert votes to a DataFrame data = { "model_a": [vote.model_a for vote in votes], "model_b": [vote.model_b for vote in votes], "winner": [vote.winner for vote in votes] } df = pd.DataFrame(data) # Compute Elo scores using the existing function elo_scores = compute_elo(df) return elo_scores