bhagwandas commited on
Commit
12e43cb
·
verified ·
1 Parent(s): 6622352

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -0
app.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ from sklearn.preprocessing import StandardScaler, LabelEncoder
4
+ from sklearn.model_selection import train_test_split
5
+ from sklearn.ensemble import RandomForestRegressor
6
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
7
+ import gradio as gr
8
+
9
+ # -------------------------------
10
+ # 1. Load and Preprocess Data
11
+ # -------------------------------
12
+ file_path = "path_to_your_csv_file.csv" # Replace with your actual file path
13
+ df = pd.read_csv(file_path)
14
+
15
+ # Handle Categorical Columns
16
+ label_encoders = {}
17
+ for col in ['Seed_Variety', 'Irrigation_Schedule']:
18
+ label_encoders[col] = LabelEncoder()
19
+ df[col] = label_encoders[col].fit_transform(df[col])
20
+
21
+ # Normalize Numerical Columns
22
+ scaler = StandardScaler()
23
+ numerical_cols = ['Soil_Quality', 'Fertilizer_Amount_kg_per_hectare', 'Sunny_Days', 'Rainfall_mm']
24
+ df[numerical_cols] = scaler.fit_transform(df[numerical_cols])
25
+
26
+ # Split Dataset
27
+ X = df.drop(columns=['Yield_kg_per_hectare'])
28
+ y = df['Yield_kg_per_hectare']
29
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
30
+
31
+ # -------------------------------
32
+ # 2. Train Model
33
+ # -------------------------------
34
+ model = RandomForestRegressor(n_estimators=100, random_state=42)
35
+ model.fit(X_train, y_train)
36
+
37
+ # -------------------------------
38
+ # 3. Prediction Function
39
+ # -------------------------------
40
+ def predict_yield(soil_quality, seed_variety, fertilizer_amount, sunny_days, rainfall, irrigation_schedule):
41
+ # Preprocess Inputs
42
+ input_data = pd.DataFrame({
43
+ 'Soil_Quality': [soil_quality],
44
+ 'Seed_Variety': [label_encoders['Seed_Variety'].transform([seed_variety])[0]],
45
+ 'Fertilizer_Amount_kg_per_hectare': [fertilizer_amount],
46
+ 'Sunny_Days': [sunny_days],
47
+ 'Rainfall_mm': [rainfall],
48
+ 'Irrigation_Schedule': [label_encoders['Irrigation_Schedule'].transform([irrigation_schedule])[0]],
49
+ })
50
+ input_data[numerical_cols] = scaler.transform(input_data[numerical_cols])
51
+
52
+ # Prediction
53
+ predicted_yield = model.predict(input_data)[0]
54
+
55
+ # Insights (Static Example)
56
+ insight = (
57
+ f"To optimize yield, maintain fertilizer levels around {fertilizer_amount * 1.1:.2f} kg/hectare "
58
+ f"and ensure consistent irrigation on {irrigation_schedule} schedule."
59
+ )
60
+
61
+ return f"""
62
+ - **Predicted Yield:** {predicted_yield:.2f} kg/hectare
63
+ - **Optimal Fertilizer Usage:** {fertilizer_amount * 1.1:.2f} kg/hectare
64
+ - **Insight:** {insight}
65
+ """
66
+
67
+ # -------------------------------
68
+ # 4. User Interface (Gradio)
69
+ # -------------------------------
70
+ interface = gr.Interface(
71
+ fn=predict_yield,
72
+ inputs=[
73
+ gr.Number(label="Soil Quality (0-1 normalized)"),
74
+ gr.Textbox(label="Seed Variety"),
75
+ gr.Number(label="Fertilizer Amount (kg/hectare)"),
76
+ gr.Number(label="Sunny Days"),
77
+ gr.Number(label="Rainfall (mm)"),
78
+ gr.Textbox(label="Irrigation Schedule"),
79
+ ],
80
+ outputs="text",
81
+ title="Crop Yield Prediction App",
82
+ description="Enter crop parameters to predict yield and get professional agricultural insights."
83
+ )
84
+
85
+ # Launch App
86
+ if __name__ == "__main__":
87
+ interface.launch()