Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.ensemble import RandomForestRegressor
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
# -------------------------------
|
10 |
+
# 1. Load and Preprocess Data
|
11 |
+
# -------------------------------
|
12 |
+
file_path = "path_to_your_csv_file.csv" # Replace with your actual file path
|
13 |
+
df = pd.read_csv(file_path)
|
14 |
+
|
15 |
+
# Handle Categorical Columns
|
16 |
+
label_encoders = {}
|
17 |
+
for col in ['Seed_Variety', 'Irrigation_Schedule']:
|
18 |
+
label_encoders[col] = LabelEncoder()
|
19 |
+
df[col] = label_encoders[col].fit_transform(df[col])
|
20 |
+
|
21 |
+
# Normalize Numerical Columns
|
22 |
+
scaler = StandardScaler()
|
23 |
+
numerical_cols = ['Soil_Quality', 'Fertilizer_Amount_kg_per_hectare', 'Sunny_Days', 'Rainfall_mm']
|
24 |
+
df[numerical_cols] = scaler.fit_transform(df[numerical_cols])
|
25 |
+
|
26 |
+
# Split Dataset
|
27 |
+
X = df.drop(columns=['Yield_kg_per_hectare'])
|
28 |
+
y = df['Yield_kg_per_hectare']
|
29 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
30 |
+
|
31 |
+
# -------------------------------
|
32 |
+
# 2. Train Model
|
33 |
+
# -------------------------------
|
34 |
+
model = RandomForestRegressor(n_estimators=100, random_state=42)
|
35 |
+
model.fit(X_train, y_train)
|
36 |
+
|
37 |
+
# -------------------------------
|
38 |
+
# 3. Prediction Function
|
39 |
+
# -------------------------------
|
40 |
+
def predict_yield(soil_quality, seed_variety, fertilizer_amount, sunny_days, rainfall, irrigation_schedule):
|
41 |
+
# Preprocess Inputs
|
42 |
+
input_data = pd.DataFrame({
|
43 |
+
'Soil_Quality': [soil_quality],
|
44 |
+
'Seed_Variety': [label_encoders['Seed_Variety'].transform([seed_variety])[0]],
|
45 |
+
'Fertilizer_Amount_kg_per_hectare': [fertilizer_amount],
|
46 |
+
'Sunny_Days': [sunny_days],
|
47 |
+
'Rainfall_mm': [rainfall],
|
48 |
+
'Irrigation_Schedule': [label_encoders['Irrigation_Schedule'].transform([irrigation_schedule])[0]],
|
49 |
+
})
|
50 |
+
input_data[numerical_cols] = scaler.transform(input_data[numerical_cols])
|
51 |
+
|
52 |
+
# Prediction
|
53 |
+
predicted_yield = model.predict(input_data)[0]
|
54 |
+
|
55 |
+
# Insights (Static Example)
|
56 |
+
insight = (
|
57 |
+
f"To optimize yield, maintain fertilizer levels around {fertilizer_amount * 1.1:.2f} kg/hectare "
|
58 |
+
f"and ensure consistent irrigation on {irrigation_schedule} schedule."
|
59 |
+
)
|
60 |
+
|
61 |
+
return f"""
|
62 |
+
- **Predicted Yield:** {predicted_yield:.2f} kg/hectare
|
63 |
+
- **Optimal Fertilizer Usage:** {fertilizer_amount * 1.1:.2f} kg/hectare
|
64 |
+
- **Insight:** {insight}
|
65 |
+
"""
|
66 |
+
|
67 |
+
# -------------------------------
|
68 |
+
# 4. User Interface (Gradio)
|
69 |
+
# -------------------------------
|
70 |
+
interface = gr.Interface(
|
71 |
+
fn=predict_yield,
|
72 |
+
inputs=[
|
73 |
+
gr.Number(label="Soil Quality (0-1 normalized)"),
|
74 |
+
gr.Textbox(label="Seed Variety"),
|
75 |
+
gr.Number(label="Fertilizer Amount (kg/hectare)"),
|
76 |
+
gr.Number(label="Sunny Days"),
|
77 |
+
gr.Number(label="Rainfall (mm)"),
|
78 |
+
gr.Textbox(label="Irrigation Schedule"),
|
79 |
+
],
|
80 |
+
outputs="text",
|
81 |
+
title="Crop Yield Prediction App",
|
82 |
+
description="Enter crop parameters to predict yield and get professional agricultural insights."
|
83 |
+
)
|
84 |
+
|
85 |
+
# Launch App
|
86 |
+
if __name__ == "__main__":
|
87 |
+
interface.launch()
|