Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -9,46 +9,45 @@ model = SentenceTransformer("avsolatorio/GIST-small-Embedding-v0", revision=revi
|
|
9 |
|
10 |
# Precompute reference embeddings
|
11 |
ref_texts = [
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
|
32 |
ref_embeddings = model.encode(ref_texts, convert_to_tensor=True)
|
33 |
|
34 |
def find_query_type(query):
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
iface = gr.Interface(fn=predict,
|
48 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
|
49 |
-
outputs="text",
|
50 |
-
title="Query Type Classifier",
|
51 |
-
description="This model classifies the type of your query. Just input your query and get the predicted category.")
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
|
|
|
|
9 |
|
10 |
# Precompute reference embeddings
|
11 |
ref_texts = [
|
12 |
+
"Theatro App: Hello John. Hey John. Hi John. Call John",
|
13 |
+
"Theatro App: Message John. Message for John. Leave a message for John",
|
14 |
+
"Theatro App: Play messages. Listen to messages",
|
15 |
+
"Theatro App: What time is it?",
|
16 |
+
"Theatro App: What time is it?",
|
17 |
+
"Theatro App: Cashier Backup. Backup Cashier. Register backup. Register assistance.",
|
18 |
+
"Theatro App: repeat",
|
19 |
+
"Theatro App: Check inventory",
|
20 |
+
"Theatro App: Check Sales",
|
21 |
+
"Theatro App: Curbside Pickup",
|
22 |
+
"Theatro App: Replay last message.",
|
23 |
+
"Theatro App: Post it. Post it for group"
|
24 |
+
"Theatro App: Announcement. Announcement for the group",
|
25 |
+
"Open question: This is about products sold in TractorSupply.",
|
26 |
+
"Open question: This is about pet care.",
|
27 |
+
"Open question: What is the weather like?",
|
28 |
+
"Open question: What's 15% off from $79.99?",
|
29 |
+
"Open question: Can you look up the skew for 1091784?",
|
30 |
+
]
|
31 |
|
32 |
ref_embeddings = model.encode(ref_texts, convert_to_tensor=True)
|
33 |
|
34 |
def find_query_type(query):
|
35 |
+
query_embeddings = model.encode([query], convert_to_tensor=True)
|
36 |
+
scores = F.cosine_similarity(query_embeddings, ref_embeddings, dim=-1)
|
37 |
+
max_index = torch.argmax(scores).item()
|
38 |
+
ref_text = ref_texts[max_index]
|
39 |
+
query_type = ref_text.split(": ")[0]
|
40 |
+
return query_type
|
41 |
|
42 |
+
import gradio as gr
|
43 |
+
def predict(query):
|
44 |
+
query_type = find_query_type(query)
|
45 |
+
return query_type
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
iface = gr.Interface(fn=predict,
|
48 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
|
49 |
+
outputs="text",
|
50 |
+
title="Query Type Classifier",
|
51 |
+
description="This model classifies the type of your query. Just input your query and get the predicted category.")
|
52 |
|
53 |
+
iface.launch()
|