File size: 657 Bytes
99947f3
5328f0c
7ec4116
51e6030
99947f3
7ec4116
5328f0c
99947f3
 
5328f0c
99947f3
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import requests

url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)

processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')

inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])