Spaces:
Runtime error
Runtime error
File size: 12,615 Bytes
6308102 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import os
import sys
import math
import numpy as np
import torch
import spacy
import re
import random
import json
import en_core_web_sm
from string import punctuation
#from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config
#from transformers import BertTokenizer, BertForSequenceClassification
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
class QuestionGenerator():
def __init__(self, model_dir=None):
QG_PRETRAINED = 'iarfmoose/t5-base-question-generator'
self.ANSWER_TOKEN = '<answer>'
self.CONTEXT_TOKEN = '<context>'
self.SEQ_LENGTH = 512
self.device = torch.device('cpu')
# self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.qg_tokenizer = AutoTokenizer.from_pretrained(QG_PRETRAINED)
self.qg_model = AutoModelForSeq2SeqLM.from_pretrained(QG_PRETRAINED)
self.qg_model.to(self.device)
self.qa_evaluator = QAEvaluator(model_dir)
def generate(self, article, use_evaluator=True, num_questions=None, answer_style='all'):
print("Generating questions...\n")
qg_inputs, qg_answers = self.generate_qg_inputs(article, answer_style)
print("qg_inputs, qg_answers=>",qg_inputs, qg_answers)
generated_questions = self.generate_questions_from_inputs(qg_inputs,num_questions)
print("generated_questions(generate)=>",generated_questions)
return generated_questions
message = "{} questions doesn't match {} answers".format(
len(generated_questions),
len(qg_answers))
assert len(generated_questions) == len(qg_answers), message
if use_evaluator:
print("Evaluating QA pairs...\n")
encoded_qa_pairs = self.qa_evaluator.encode_qa_pairs(generated_questions, qg_answers)
scores = self.qa_evaluator.get_scores(encoded_qa_pairs)
if num_questions:
qa_list = self._get_ranked_qa_pairs(generated_questions, qg_answers, scores, num_questions)
else:
qa_list = self._get_ranked_qa_pairs(generated_questions, qg_answers, scores)
else:
print("Skipping evaluation step.\n")
qa_list = self._get_all_qa_pairs(generated_questions, qg_answers)
return qa_list
def generate_qg_inputs(self, text, answer_style):
VALID_ANSWER_STYLES = ['all', 'sentences', 'multiple_choice']
if answer_style not in VALID_ANSWER_STYLES:
raise ValueError(
"Invalid answer style {}. Please choose from {}".format(
answer_style,
VALID_ANSWER_STYLES
)
)
inputs = []
answers = []
if answer_style == 'sentences' or answer_style == 'all':
segments = self._split_into_segments(text)
for segment in segments:
sentences = self._split_text(segment)
prepped_inputs, prepped_answers = self._prepare_qg_inputs(sentences, segment)
inputs.extend(prepped_inputs)
answers.extend(prepped_answers)
if answer_style == 'multiple_choice' or answer_style == 'all':
sentences = self._split_text(text)
prepped_inputs, prepped_answers = self._prepare_qg_inputs_MC(sentences)
inputs.extend(prepped_inputs)
answers.extend(prepped_answers)
return inputs, answers
def generate_questions_from_inputs(self, qg_inputs,num_questions):
generated_questions = []
count = 0
print("num que => ", num_questions)
for qg_input in qg_inputs:
if count < int(num_questions):
question = self._generate_question(qg_input)
question = question.strip() #remove trailing spaces
question = question.strip(punctuation) #remove trailing questionmarks
question += "?" #add one ?
if question not in generated_questions:
generated_questions.append(question)
print("question ===> ",question)
count += 1
else:
return generated_questions
return generated_questions #
def _split_text(self, text):
MAX_SENTENCE_LEN = 128
sentences = re.findall('.*?[.!\?]', text)
cut_sentences = []
for sentence in sentences:
if len(sentence) > MAX_SENTENCE_LEN:
cut_sentences.extend(re.split('[,;:)]', sentence))
# temporary solution to remove useless post-quote sentence fragments
cut_sentences = [s for s in sentences if len(s.split(" ")) > 5]
sentences = sentences + cut_sentences
return list(set([s.strip(" ") for s in sentences]))
def _split_into_segments(self, text):
MAX_TOKENS = 490
paragraphs = text.split('\n')
tokenized_paragraphs = [self.qg_tokenizer(p)['input_ids'] for p in paragraphs if len(p) > 0]
segments = []
while len(tokenized_paragraphs) > 0:
segment = []
while len(segment) < MAX_TOKENS and len(tokenized_paragraphs) > 0:
paragraph = tokenized_paragraphs.pop(0)
segment.extend(paragraph)
segments.append(segment)
return [self.qg_tokenizer.decode(s) for s in segments]
def _prepare_qg_inputs(self, sentences, text):
inputs = []
answers = []
for sentence in sentences:
qg_input = '{} {} {} {}'.format(
self.ANSWER_TOKEN,
sentence,
self.CONTEXT_TOKEN,
text
)
inputs.append(qg_input)
answers.append(sentence)
return inputs, answers
def _prepare_qg_inputs_MC(self, sentences):
spacy_nlp = en_core_web_sm.load()
docs = list(spacy_nlp.pipe(sentences, disable=['parser']))
inputs_from_text = []
answers_from_text = []
for i in range(len(sentences)):
entities = docs[i].ents
if entities:
for entity in entities:
qg_input = '{} {} {} {}'.format(
self.ANSWER_TOKEN,
entity,
self.CONTEXT_TOKEN,
sentences[i]
)
answers = self._get_MC_answers(entity, docs)
inputs_from_text.append(qg_input)
answers_from_text.append(answers)
return inputs_from_text, answers_from_text
def _get_MC_answers(self, correct_answer, docs):
entities = []
for doc in docs:
entities.extend([{'text': e.text, 'label_': e.label_} for e in doc.ents])
# remove duplicate elements
entities_json = [json.dumps(kv) for kv in entities]
pool = set(entities_json)
num_choices = min(4, len(pool)) - 1 # -1 because we already have the correct answer
# add the correct answer
final_choices = []
correct_label = correct_answer.label_
final_choices.append({'answer': correct_answer.text, 'correct': True})
pool.remove(json.dumps({'text': correct_answer.text, 'label_': correct_answer.label_}))
# find answers with the same NER label
matches = [e for e in pool if correct_label in e]
# if we don't have enough then add some other random answers
if len(matches) < num_choices:
choices = matches
pool = pool.difference(set(choices))
choices.extend(random.sample(pool, num_choices - len(choices)))
else:
choices = random.sample(matches, num_choices)
choices = [json.loads(s) for s in choices]
for choice in choices:
final_choices.append({'answer': choice['text'], 'correct': False})
random.shuffle(final_choices)
return final_choices
def _generate_question(self, qg_input):
self.qg_model.eval()
encoded_input = self._encode_qg_input(qg_input)
with torch.no_grad():
output = self.qg_model.generate(input_ids=encoded_input['input_ids'])
return self.qg_tokenizer.decode(output[0])
def _encode_qg_input(self, qg_input):
return self.qg_tokenizer(
qg_input,
pad_to_max_length=True,
max_length=self.SEQ_LENGTH,
truncation=True,
return_tensors="pt"
).to(self.device)
def _get_ranked_qa_pairs(self, generated_questions, qg_answers, scores, num_questions=10):
if num_questions > len(scores):
num_questions = len(scores)
print("\nWas only able to generate {} questions. For more questions, please input a longer text.".format(num_questions))
qa_list = []
for i in range(num_questions):
index = scores[i]
qa = self._make_dict(
generated_questions[index].split('?')[0] + '?',
qg_answers[index])
qa_list.append(qa)
return qa_list
def _get_all_qa_pairs(self, generated_questions, qg_answers):
qa_list = []
for i in range(len(generated_questions)):
qa = self._make_dict(
generated_questions[i].split('?')[0] + '?',
qg_answers[i])
qa_list.append(qa)
return qa_list
def _make_dict(self, question, answer):
qa = {}
qa['question'] = question
qa['answer'] = answer
return qa
class QAEvaluator():
def __init__(self, model_dir=None):
QAE_PRETRAINED = 'iarfmoose/bert-base-cased-qa-evaluator'
self.SEQ_LENGTH = 512
self.device = torch.device('cpu')
# self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.qae_tokenizer = AutoTokenizer.from_pretrained(QAE_PRETRAINED)
self.qae_model = AutoModelForSequenceClassification.from_pretrained(QAE_PRETRAINED)
self.qae_model.to(self.device)
def encode_qa_pairs(self, questions, answers):
encoded_pairs = []
for i in range(len(questions)):
encoded_qa = self._encode_qa(questions[i], answers[i])
encoded_pairs.append(encoded_qa.to(self.device))
return encoded_pairs
def get_scores(self, encoded_qa_pairs):
scores = {}
self.qae_model.eval()
with torch.no_grad():
for i in range(len(encoded_qa_pairs)):
scores[i] = self._evaluate_qa(encoded_qa_pairs[i])
return [k for k, v in sorted(scores.items(), key=lambda item: item[1], reverse=True)]
def _encode_qa(self, question, answer):
if type(answer) is list:
for a in answer:
if a['correct']:
correct_answer = a['answer']
else:
correct_answer = answer
return self.qae_tokenizer(
text=question,
text_pair=correct_answer,
pad_to_max_length=True,
max_length=self.SEQ_LENGTH,
truncation=True,
return_tensors="pt"
)
def _evaluate_qa(self, encoded_qa_pair):
output = self.qae_model(**encoded_qa_pair)
return output[0][0][1]
def print_qa(qa_list, show_answers=True):
for i in range(len(qa_list)):
space = ' ' * int(np.where(i < 9, 3, 4)) # wider space for 2 digit q nums
print('{}) Q: {}'.format(i + 1, qa_list[i]['question']))
answer = qa_list[i]['answer']
# print a list of multiple choice answers
if type(answer) is list:
if show_answers:
print('{}A: 1.'.format(space),
answer[0]['answer'],
np.where(answer[0]['correct'], '(correct)', ''))
for j in range(1, len(answer)):
print('{}{}.'.format(space + ' ', j + 1),
answer[j]['answer'],
np.where(answer[j]['correct'] == True, '(correct)', ''))
else:
print('{}A: 1.'.format(space),
answer[0]['answer'])
for j in range(1, len(answer)):
print('{}{}.'.format(space + ' ', j + 1),
answer[j]['answer'])
print('')
# print full sentence answers
else:
if show_answers:
print('{}A:'.format(space), answer, '\n') |