File size: 2,620 Bytes
cdb0658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import os
import numpy as np
from PIL import Image, ImageOps
def crop_and_pad_image(image_path, threshold=20, target_size=(512, 512)):
"""
Crop and pad an image to a square with the specified target size.
Args:
image_path (str): Path to the input image file.
threshold (int): Threshold value for binarizing the image.
target_size (tuple): Target size of the output image (width, height).
Returns:
PIL.Image.Image: Cropped and padded image.
"""
try:
# Load the image
image = Image.open(image_path).convert("RGB")
except Exception as e:
raise ValueError(f"Error loading image: {str(e)}")
# Convert the image to a NumPy array
image_array = np.array(image)
# Binarize the image
binary_image_array = np.where(image_array > threshold, 1, 0).astype(np.uint8)
# Find non-zero elements (non-black pixels)
non_zero_indices = np.argwhere(binary_image_array)
# Check if non-zero elements exist
if non_zero_indices.size == 0:
raise ValueError(f"No non-zero elements found for the image: {image_path}")
# Get the bounding box of non-zero elements
(y1, x1, _), (y2, x2, _) = non_zero_indices.min(0), non_zero_indices.max(0)
# Crop the Region of Interest (ROI)
cropped_img = image.crop((x1, y1, x2, y2))
# Pad the image to make it a square
squared_img = ImageOps.pad(cropped_img, target_size)
return squared_img
def track_files(folder_path, extensions=('.jpg', '.jpeg', '.png')):
"""
Track all the files in a folder and its subfolders.
Args:
folder_path (str): The path of the folder to track files in.
extensions (tuple, optional): Tuple of file extensions to track. Default is ('.jpg', '.jpeg', '.png').
Returns:
list: A list containing the paths of all files in the folder and its subfolders.
"""
# Validate folder_path
if not os.path.isdir(folder_path):
raise ValueError("Invalid folder path provided.")
# Convert extensions to lowercase for case-insensitive comparison
extensions = tuple(ext.lower() for ext in extensions)
# Initialize file_list
file_list = []
# Walk through the folder and its subfolders
for root, dirs, files in os.walk(folder_path):
for filename in files:
file_path = os.path.join(root, filename)
_, extension = os.path.splitext(file_path)
# Check if the file extension is in the list of extensions
if extension.lower() in extensions:
file_list.append(file_path)
return file_list |