bhimrazy's picture
updates model file
41420e1
raw
history blame
3.87 kB
import lightning as L
import torch
from torch import nn
from torchmetrics.functional import accuracy, cohen_kappa
from torchvision import models
class DRModel(L.LightningModule):
def __init__(
self, num_classes: int, learning_rate: float = 2e-4, class_weights=None
):
super().__init__()
self.save_hyperparameters()
self.num_classes = num_classes
self.learning_rate = learning_rate
# Define the model
# self.model = models.densenet121(weights=models.DenseNet121_Weights.DEFAULT)
# self.model = models.densenet169(weights=models.DenseNet169_Weights.DEFAULT)
# self.model = models.densenet161(weights=models.DenseNet161_Weights.DEFAULT)
self.model = models.vit_b_16(weights=models.ViT_B_16_Weights.DEFAULT)
# self.model = models.vit_b_32(weights=models.ViT_B_32_Weights.DEFAULT)
# freeze the feature extractor
for param in self.model.parameters():
param.requires_grad = False
# self.model.head.weight.requires_grad = True
# self.model.head.bias.requires_grad = True
# Change the output layer to have the number of classes
# in_features = self.model.classifier.in_features
in_features = 768
self.model.heads = nn.Sequential(
# self.model.classifier = nn.Sequential(
nn.Linear(in_features, in_features // 2),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(in_features // 2, num_classes),
)
# Define the loss function
self.criterion = nn.CrossEntropyLoss(weight=class_weights)
def forward(self, x):
return self.model(x)
def training_step(self, batch):
x, y = batch
logits = self.model(x)
loss = self.criterion(logits, y)
self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self.model(x)
loss = self.criterion(logits, y)
preds = torch.argmax(logits, dim=1)
acc = accuracy(preds, y, task="multiclass", num_classes=self.num_classes)
kappa = cohen_kappa(
preds,
y,
task="multiclass",
num_classes=self.num_classes,
weights="quadratic",
)
self.log("val_loss", loss, on_step=True, on_epoch=True, prog_bar=True)
self.log("val_acc", acc, on_step=True, on_epoch=True, prog_bar=True)
self.log("val_kappa", kappa, on_step=True, on_epoch=True, prog_bar=True)
def configure_optimizers(self):
# optimizer = torch.optim.Adam(
# self.parameters(), lr=self.learning_rate, weight_decay=1e-4
# )
optimizer = torch.optim.AdamW(
self.parameters(), lr=self.learning_rate, weight_decay=0.05
)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=20)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode="min", # or "max" if you're maximizing a metric
factor=0.1, # factor by which the learning rate will be reduced
patience=5, # number of epochs with no improvement after which learning rate will be reduced
verbose=True, # print a message when learning rate is reduced
threshold=0.001, # threshold for measuring the new optimum, to only focus on significant changes
)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": scheduler,
"interval": "epoch",
"monitor": "val_loss",
},
}
# return optimizer