bhimrazy's picture
Adds lr moitor to train
30df46a
raw
history blame
1.19 kB
import lightning as L
import torch
from lightning.pytorch.callbacks import ModelCheckpoint, LearningRateMonitor
from lightning.pytorch.loggers import TensorBoardLogger
from src.dataset import DRDataModule
from src.model import DRModel
# seed everything for reproducibility
SEED = 42
L.seed_everything(SEED, workers=True)
torch.set_float32_matmul_precision("high")
# Init DataModule
dm = DRDataModule(batch_size=96, num_workers=8)
dm.setup()
# Init model from datamodule's attributes
model = DRModel(
num_classes=dm.num_classes, learning_rate=3e-5, class_weights=dm.class_weights
)
# Init logger
logger = TensorBoardLogger("lightning_logs", name="dr_model")
# Init callbacks
checkpoint_callback = ModelCheckpoint(
monitor="val_loss",
mode="min",
save_top_k=3,
dirpath="checkpoints",
)
# Init LearningRateMonitor
lr_monitor = LearningRateMonitor(logging_interval="step")
# Init trainer
trainer = L.Trainer(
max_epochs=20,
accelerator="auto",
devices="auto",
logger=logger,
callbacks=[checkpoint_callback, lr_monitor],
enable_checkpointing=True,
)
# Pass the datamodule as arg to trainer.fit to override model hooks :)
trainer.fit(model, dm)