|
import os |
|
from datetime import datetime |
|
|
|
import cv2 |
|
import matplotlib.image as mpimg |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from PIL import Image, ImageOps |
|
from zoneinfo import ZoneInfo |
|
|
|
|
|
def crop_and_pad_image(image_path, threshold=20, target_size=(512, 512)): |
|
""" |
|
Crop and pad an image to a square with the specified target size. |
|
|
|
Args: |
|
image_path (str): Path to the input image file. |
|
threshold (int): Threshold value for binarizing the image. |
|
target_size (tuple): Target size of the output image (width, height). |
|
|
|
Returns: |
|
PIL.Image.Image: Cropped and padded image. |
|
""" |
|
try: |
|
|
|
image = Image.open(image_path).convert("RGB") |
|
except Exception as e: |
|
raise ValueError(f"Error loading image: {str(e)}") |
|
|
|
|
|
image_array = np.array(image) |
|
|
|
|
|
binary_image_array = np.where(image_array > threshold, 1, 0).astype(np.uint8) |
|
|
|
|
|
non_zero_indices = np.argwhere(binary_image_array) |
|
|
|
|
|
if non_zero_indices.size == 0: |
|
raise ValueError(f"No non-zero elements found for the image: {image_path}") |
|
|
|
|
|
(y1, x1, _), (y2, x2, _) = non_zero_indices.min(0), non_zero_indices.max(0) |
|
|
|
|
|
cropped_img = image.crop((x1, y1, x2, y2)) |
|
|
|
|
|
squared_img = ImageOps.pad(cropped_img, target_size) |
|
|
|
return squared_img |
|
|
|
|
|
def track_files(folder_path, extensions=(".jpg", ".jpeg", ".png")): |
|
""" |
|
Track all the files in a folder and its subfolders. |
|
|
|
Args: |
|
folder_path (str): The path of the folder to track files in. |
|
extensions (tuple, optional): Tuple of file extensions to track. Default is ('.jpg', '.jpeg', '.png'). |
|
|
|
Returns: |
|
list: A list containing the paths of all files in the folder and its subfolders. |
|
""" |
|
|
|
if not os.path.isdir(folder_path): |
|
raise ValueError("Invalid folder path provided.") |
|
|
|
|
|
extensions = tuple(ext.lower() for ext in extensions) |
|
|
|
|
|
file_list = [] |
|
|
|
|
|
for root, dirs, files in os.walk(folder_path): |
|
for filename in files: |
|
file_path = os.path.join(root, filename) |
|
_, extension = os.path.splitext(file_path) |
|
|
|
if extension.lower() in extensions: |
|
file_list.append(file_path) |
|
|
|
return file_list |
|
|
|
|
|
def crop_circle_roi(image_path): |
|
""" |
|
Crop the circular Region of Interest (ROI) from a fundus image. |
|
|
|
Args: |
|
- image_path (str): Path to the fundus image. |
|
|
|
Returns: |
|
- cropped_roi (numpy.ndarray): The cropped circular Region of Interest. |
|
""" |
|
|
|
image = cv2.imread(image_path, cv2.IMREAD_COLOR) |
|
|
|
|
|
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) |
|
|
|
|
|
_, thresholded_image = cv2.threshold(gray_image, 50, 255, cv2.THRESH_BINARY) |
|
|
|
|
|
contours, _ = cv2.findContours( |
|
thresholded_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE |
|
) |
|
|
|
|
|
contour = max(contours, key=cv2.contourArea) |
|
|
|
|
|
x, y, w, h = cv2.boundingRect(contour) |
|
|
|
|
|
cropped_roi = image[y : y + h, x : x + w] |
|
|
|
return cropped_roi |
|
|
|
|
|
def plot_image_grid(image_paths, roi_crop=False): |
|
""" |
|
Create a grid plot with a maximum of 16 images. |
|
|
|
Args: |
|
- image_paths (list): A list of image paths to be plotted. |
|
|
|
Returns: |
|
- None |
|
""" |
|
num_images = min(len(image_paths), 16) |
|
num_rows = (num_images - 1) // 4 + 1 |
|
fig, axes = plt.subplots(num_rows, 4, figsize=(12, 3 * num_rows)) |
|
|
|
for i, ax in enumerate(axes.flat): |
|
if i < num_images: |
|
if roi_crop: |
|
img = crop_and_pad_image(image_paths[i]) |
|
else: |
|
img = mpimg.imread(image_paths[i]) |
|
ax.imshow(img) |
|
ax.axis("off") |
|
else: |
|
ax.axis("off") |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
|
|
def generate_run_id(zone: ZoneInfo = ZoneInfo("Asia/Kathmandu")) -> str: |
|
"""Generate a unique run ID using current UTC date and time. |
|
|
|
Args: |
|
zone (ZoneInfo, optional): Timezone information. Defaults to Indian Standard Time. |
|
|
|
Returns: |
|
str: A unique run ID in the format 'run-YYYY-MM-DD-HH-MM-SS'. |
|
""" |
|
try: |
|
current_utc_time = datetime.utcnow().astimezone(zone) |
|
formatted_time = current_utc_time.strftime("%Y-%m-%d-%H-%M-%S") |
|
return f"run-{formatted_time}" |
|
except Exception as e: |
|
|
|
print(f"Error generating run ID: {e}") |
|
return None |
|
|
|
|
|
if __name__ == "__main__": |
|
print(generate_run_id()) |
|
|