Refactors dataset and datamodules
Browse files- src/data_module.py +117 -0
- src/dataset.py +1 -79
src/data_module.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import lightning as L
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from sklearn.utils.class_weight import compute_class_weight
|
5 |
+
from torch.utils.data import DataLoader, WeightedRandomSampler
|
6 |
+
from torchvision.transforms import v2 as T
|
7 |
+
|
8 |
+
from src.dataset import DRDataset
|
9 |
+
|
10 |
+
|
11 |
+
class DRDataModule(L.LightningDataModule):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
train_csv_path,
|
15 |
+
val_csv_path,
|
16 |
+
image_size: int = 224,
|
17 |
+
batch_size: int = 8,
|
18 |
+
num_workers: int = 4,
|
19 |
+
use_class_weighting: bool = False,
|
20 |
+
use_weighted_sampler: bool = False,
|
21 |
+
):
|
22 |
+
super().__init__()
|
23 |
+
self.batch_size = batch_size
|
24 |
+
self.num_workers = num_workers
|
25 |
+
|
26 |
+
# Ensure mutual exclusivity between use_class_weighting and use_weighted_sampler
|
27 |
+
if use_class_weighting and use_weighted_sampler:
|
28 |
+
raise ValueError(
|
29 |
+
"use_class_weighting and use_weighted_sampler cannot both be True"
|
30 |
+
)
|
31 |
+
|
32 |
+
self.train_csv_path = train_csv_path
|
33 |
+
self.val_csv_path = val_csv_path
|
34 |
+
self.use_class_weighting = use_class_weighting
|
35 |
+
self.use_weighted_sampler = use_weighted_sampler
|
36 |
+
|
37 |
+
# Define the transformations
|
38 |
+
self.train_transform = T.Compose(
|
39 |
+
[
|
40 |
+
T.Resize((image_size, image_size), antialias=True),
|
41 |
+
T.RandomAffine(degrees=10, translate=(0.01, 0.01), scale=(0.99, 1.01)),
|
42 |
+
T.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.01),
|
43 |
+
T.RandomHorizontalFlip(p=0.5),
|
44 |
+
T.ToDtype(torch.float32, scale=True),
|
45 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
46 |
+
]
|
47 |
+
)
|
48 |
+
|
49 |
+
self.val_transform = T.Compose(
|
50 |
+
[
|
51 |
+
T.Resize((image_size, image_size), antialias=True),
|
52 |
+
T.ToDtype(torch.float32, scale=True),
|
53 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
54 |
+
]
|
55 |
+
)
|
56 |
+
|
57 |
+
def setup(self, stage=None):
|
58 |
+
"""Set up datasets for training and validation."""
|
59 |
+
# Initialize datasets with specified transformations
|
60 |
+
self.train_dataset = DRDataset(
|
61 |
+
self.train_csv_path, transform=self.train_transform
|
62 |
+
)
|
63 |
+
self.val_dataset = DRDataset(self.val_csv_path, transform=self.val_transform)
|
64 |
+
|
65 |
+
# Compute number of classes and class weights
|
66 |
+
labels = self.train_dataset.labels.numpy()
|
67 |
+
self.num_classes = len(np.unique(labels))
|
68 |
+
self.class_weights = (
|
69 |
+
self._compute_class_weights(labels) if self.use_class_weighting else None
|
70 |
+
)
|
71 |
+
|
72 |
+
def train_dataloader(self):
|
73 |
+
"""Returns a DataLoader for training data."""
|
74 |
+
if self.use_weighted_sampler:
|
75 |
+
sampler = self._get_weighted_sampler(self.train_dataset.labels.numpy())
|
76 |
+
shuffle = False # Sampler will handle shuffling
|
77 |
+
else:
|
78 |
+
sampler = None
|
79 |
+
shuffle = True
|
80 |
+
|
81 |
+
return DataLoader(
|
82 |
+
self.train_dataset,
|
83 |
+
batch_size=self.batch_size,
|
84 |
+
sampler=sampler,
|
85 |
+
shuffle=shuffle,
|
86 |
+
num_workers=self.num_workers,
|
87 |
+
)
|
88 |
+
|
89 |
+
def val_dataloader(self):
|
90 |
+
return DataLoader(
|
91 |
+
self.val_dataset, batch_size=self.batch_size, num_workers=self.num_workers
|
92 |
+
)
|
93 |
+
|
94 |
+
def _compute_class_weights(self, labels):
|
95 |
+
class_weights = compute_class_weight(
|
96 |
+
class_weight="balanced", classes=np.unique(labels), y=labels
|
97 |
+
)
|
98 |
+
return torch.tensor(class_weights, dtype=torch.float32)
|
99 |
+
|
100 |
+
def _get_weighted_sampler(self, labels: np.ndarray) -> WeightedRandomSampler:
|
101 |
+
"""Returns a WeightedRandomSampler based on class weights.
|
102 |
+
|
103 |
+
The weights tensor should contain a weight for each sample, not the class weights.
|
104 |
+
Have a look at this post for an example: https://discuss.pytorch.org/t/how-to-handle-imbalanced-classes/11264/2
|
105 |
+
https://www.maskaravivek.com/post/pytorch-weighted-random-sampler/
|
106 |
+
"""
|
107 |
+
|
108 |
+
class_sample_count = np.array(
|
109 |
+
[len(np.where(labels == label)[0]) for label in np.unique(labels)]
|
110 |
+
)
|
111 |
+
weight = 1.0 / class_sample_count
|
112 |
+
samples_weight = np.array([weight[label] for label in labels])
|
113 |
+
samples_weight = torch.from_numpy(samples_weight)
|
114 |
+
|
115 |
+
return WeightedRandomSampler(
|
116 |
+
weights=samples_weight, num_samples=len(labels), replacement=True
|
117 |
+
)
|
src/dataset.py
CHANGED
@@ -1,13 +1,9 @@
|
|
1 |
import os
|
2 |
|
3 |
-
import lightning as L
|
4 |
-
import numpy as np
|
5 |
import pandas as pd
|
6 |
import torch
|
7 |
-
from
|
8 |
-
from torch.utils.data import DataLoader, Dataset, WeightedRandomSampler
|
9 |
from torchvision.io import read_image
|
10 |
-
from torchvision.transforms import v2 as T
|
11 |
|
12 |
|
13 |
class DRDataset(Dataset):
|
@@ -68,77 +64,3 @@ class DRDataset(Dataset):
|
|
68 |
|
69 |
return image, label
|
70 |
|
71 |
-
|
72 |
-
class DRDataModule(L.LightningDataModule):
|
73 |
-
def __init__(self, batch_size: int = 8, num_workers: int = 4):
|
74 |
-
super().__init__()
|
75 |
-
self.batch_size = batch_size
|
76 |
-
self.num_workers = num_workers
|
77 |
-
|
78 |
-
# Define the transformations
|
79 |
-
self.train_transform = T.Compose(
|
80 |
-
[
|
81 |
-
T.Resize((224, 224), antialias=True),
|
82 |
-
T.RandomAffine(degrees=10, translate=(0.01, 0.01), scale=(0.99, 1.01)),
|
83 |
-
T.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.01),
|
84 |
-
T.RandomHorizontalFlip(p=0.5),
|
85 |
-
T.ToDtype(torch.float32, scale=True),
|
86 |
-
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
87 |
-
]
|
88 |
-
)
|
89 |
-
|
90 |
-
self.val_transform = T.Compose(
|
91 |
-
[
|
92 |
-
T.Resize((224, 224), antialias=True),
|
93 |
-
T.ToDtype(torch.float32, scale=True),
|
94 |
-
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
95 |
-
]
|
96 |
-
)
|
97 |
-
|
98 |
-
self.num_classes = 5
|
99 |
-
|
100 |
-
def setup(self, stage=None):
|
101 |
-
self.train_dataset = DRDataset("data/train.csv", transform=self.train_transform)
|
102 |
-
self.val_dataset = DRDataset("data/val.csv", transform=self.val_transform)
|
103 |
-
|
104 |
-
# compute class weights
|
105 |
-
labels = self.train_dataset.labels.numpy()
|
106 |
-
self.class_weights = None # self.compute_class_weights(labels)
|
107 |
-
|
108 |
-
def train_dataloader(self):
|
109 |
-
return DataLoader(
|
110 |
-
self.train_dataset,
|
111 |
-
batch_size=self.batch_size,
|
112 |
-
sampler=self._get_weighted_sampler(self.train_dataset.labels.numpy()),
|
113 |
-
# shuffle=True,
|
114 |
-
num_workers=self.num_workers,
|
115 |
-
)
|
116 |
-
|
117 |
-
def val_dataloader(self):
|
118 |
-
return DataLoader(
|
119 |
-
self.val_dataset, batch_size=self.batch_size, num_workers=self.num_workers
|
120 |
-
)
|
121 |
-
|
122 |
-
def compute_class_weights(self, labels):
|
123 |
-
class_weights = compute_class_weight(
|
124 |
-
class_weight="balanced", classes=np.unique(labels), y=labels
|
125 |
-
)
|
126 |
-
return torch.tensor(class_weights, dtype=torch.float32)
|
127 |
-
|
128 |
-
def _get_weighted_sampler(self, labels: np.ndarray) -> WeightedRandomSampler:
|
129 |
-
"""Returns a WeightedRandomSampler based on class weights.
|
130 |
-
|
131 |
-
The weights tensor should contain a weight for each sample, not the class weights.
|
132 |
-
Have a look at this post for an example: https://discuss.pytorch.org/t/how-to-handle-imbalanced-classes/11264/2
|
133 |
-
https://www.maskaravivek.com/post/pytorch-weighted-random-sampler/
|
134 |
-
"""
|
135 |
-
|
136 |
-
|
137 |
-
class_sample_count = np.array([len(np.where(labels == label)[0]) for label in np.unique(labels)])
|
138 |
-
weight = 1. / class_sample_count
|
139 |
-
samples_weight = np.array([weight[label] for label in labels])
|
140 |
-
samples_weight = torch.from_numpy(samples_weight)
|
141 |
-
|
142 |
-
# class_weights = compute_class_weight("balanced", classes=np.unique(labels), y=labels)
|
143 |
-
# class_weights_tensor = torch.tensor(class_weights, dtype=torch.float32)
|
144 |
-
return WeightedRandomSampler(weights=samples_weight, num_samples=len(labels), replacement=True)
|
|
|
1 |
import os
|
2 |
|
|
|
|
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
+
from torch.utils.data import Dataset
|
|
|
6 |
from torchvision.io import read_image
|
|
|
7 |
|
8 |
|
9 |
class DRDataset(Dataset):
|
|
|
64 |
|
65 |
return image, label
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|