bhimrazy commited on
Commit
f49ae1e
·
1 Parent(s): 6cdbf08

Add image processing functions and plot image grid

Browse files
Files changed (1) hide show
  1. src/utils.py +68 -1
src/utils.py CHANGED
@@ -1,4 +1,8 @@
1
  import os
 
 
 
 
2
  import numpy as np
3
  from PIL import Image, ImageOps
4
 
@@ -76,4 +80,67 @@ def track_files(folder_path, extensions=('.jpg', '.jpeg', '.png')):
76
  if extension.lower() in extensions:
77
  file_list.append(file_path)
78
 
79
- return file_list
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+
3
+ import cv2
4
+ import matplotlib.image as mpimg
5
+ import matplotlib.pyplot as plt
6
  import numpy as np
7
  from PIL import Image, ImageOps
8
 
 
80
  if extension.lower() in extensions:
81
  file_list.append(file_path)
82
 
83
+ return file_list
84
+
85
+
86
+
87
+ def crop_circle_roi(image_path):
88
+ """
89
+ Crop the circular Region of Interest (ROI) from a fundus image.
90
+
91
+ Args:
92
+ - image_path (str): Path to the fundus image.
93
+
94
+ Returns:
95
+ - cropped_roi (numpy.ndarray): The cropped circular Region of Interest.
96
+ """
97
+ # Read the image
98
+ image = cv2.imread(image_path, cv2.IMREAD_COLOR)
99
+
100
+ # Convert the image to grayscale
101
+ gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
102
+
103
+ # Apply thresholding to binarize the image
104
+ _, thresholded_image = cv2.threshold(gray_image, 50, 255, cv2.THRESH_BINARY)
105
+
106
+ # Find contours in the binary image
107
+ contours, _ = cv2.findContours(thresholded_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
108
+
109
+ # Assuming the largest contour corresponds to the ROI
110
+ contour = max(contours, key=cv2.contourArea)
111
+
112
+ # Get the bounding rectangle of the contour
113
+ x, y, w, h = cv2.boundingRect(contour)
114
+
115
+ # Crop the circular ROI using the bounding rectangle
116
+ cropped_roi = image[y:y+h, x:x+w]
117
+
118
+ return cropped_roi
119
+
120
+ def plot_image_grid(image_paths, roi_crop=False):
121
+ """
122
+ Create a grid plot with a maximum of 16 images.
123
+
124
+ Args:
125
+ - image_paths (list): A list of image paths to be plotted.
126
+
127
+ Returns:
128
+ - None
129
+ """
130
+ num_images = min(len(image_paths), 16)
131
+ num_rows = (num_images - 1) // 4 + 1
132
+ fig, axes = plt.subplots(num_rows, 4, figsize=(12, 3 * num_rows))
133
+
134
+ for i, ax in enumerate(axes.flat):
135
+ if i < num_images:
136
+ if roi_crop:
137
+ img = crop_and_pad_image(image_paths[i])
138
+ else:
139
+ img = mpimg.imread(image_paths[i])
140
+ ax.imshow(img)
141
+ ax.axis('off')
142
+ else:
143
+ ax.axis('off')
144
+
145
+ plt.tight_layout()
146
+ plt.show()