import lightning as L import torch from torch import nn from torchmetrics.functional import accuracy from torchvision import models class DRModel(L.LightningModule): def __init__( self, num_classes: int, learning_rate: float = 2e-4, class_weights=None ): super().__init__() self.save_hyperparameters() self.num_classes = num_classes self.learning_rate = learning_rate # Define the model # self.model = models.densenet121(weights=models.DenseNet121_Weights.DEFAULT) self.model = models.densenet169(weights=models.DenseNet169_Weights.DEFAULT) # self.model = models.vit_b_16(weights=models.ViT_B_16_Weights.DEFAULT) # freeze the feature extractor for param in self.model.parameters(): param.requires_grad = False # Change the output layer to have the number of classes in_features = self.model.classifier.in_features # in_features = 768 self.model.classifier = nn.Sequential( nn.Linear(in_features, in_features // 2), nn.ReLU(), nn.Dropout(0.1), nn.Linear(in_features // 2, num_classes), ) # Define the loss function self.criterion = nn.CrossEntropyLoss(weight=class_weights) def forward(self, x): return self.model(x) def training_step(self, batch): x, y = batch logits = self.model(x) loss = self.criterion(logits, y) self.log("train_loss", loss, prog_bar=True) return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self.model(x) loss = self.criterion(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y, task="multiclass", num_classes=self.num_classes) self.log("val_loss", loss, prog_bar=True) self.log("val_acc", acc, prog_bar=True) def configure_optimizers(self): optimizer = torch.optim.Adam( self.parameters(), lr=self.learning_rate, weight_decay=1e-4 ) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": scheduler, "interval": "epoch", "monitor": "val_loss", }, } # return optimizer