import os import cv2 import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np from PIL import Image, ImageOps def crop_and_pad_image(image_path, threshold=20, target_size=(512, 512)): """ Crop and pad an image to a square with the specified target size. Args: image_path (str): Path to the input image file. threshold (int): Threshold value for binarizing the image. target_size (tuple): Target size of the output image (width, height). Returns: PIL.Image.Image: Cropped and padded image. """ try: # Load the image image = Image.open(image_path).convert("RGB") except Exception as e: raise ValueError(f"Error loading image: {str(e)}") # Convert the image to a NumPy array image_array = np.array(image) # Binarize the image binary_image_array = np.where(image_array > threshold, 1, 0).astype(np.uint8) # Find non-zero elements (non-black pixels) non_zero_indices = np.argwhere(binary_image_array) # Check if non-zero elements exist if non_zero_indices.size == 0: raise ValueError(f"No non-zero elements found for the image: {image_path}") # Get the bounding box of non-zero elements (y1, x1, _), (y2, x2, _) = non_zero_indices.min(0), non_zero_indices.max(0) # Crop the Region of Interest (ROI) cropped_img = image.crop((x1, y1, x2, y2)) # Pad the image to make it a square squared_img = ImageOps.pad(cropped_img, target_size) return squared_img def track_files(folder_path, extensions=('.jpg', '.jpeg', '.png')): """ Track all the files in a folder and its subfolders. Args: folder_path (str): The path of the folder to track files in. extensions (tuple, optional): Tuple of file extensions to track. Default is ('.jpg', '.jpeg', '.png'). Returns: list: A list containing the paths of all files in the folder and its subfolders. """ # Validate folder_path if not os.path.isdir(folder_path): raise ValueError("Invalid folder path provided.") # Convert extensions to lowercase for case-insensitive comparison extensions = tuple(ext.lower() for ext in extensions) # Initialize file_list file_list = [] # Walk through the folder and its subfolders for root, dirs, files in os.walk(folder_path): for filename in files: file_path = os.path.join(root, filename) _, extension = os.path.splitext(file_path) # Check if the file extension is in the list of extensions if extension.lower() in extensions: file_list.append(file_path) return file_list def crop_circle_roi(image_path): """ Crop the circular Region of Interest (ROI) from a fundus image. Args: - image_path (str): Path to the fundus image. Returns: - cropped_roi (numpy.ndarray): The cropped circular Region of Interest. """ # Read the image image = cv2.imread(image_path, cv2.IMREAD_COLOR) # Convert the image to grayscale gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Apply thresholding to binarize the image _, thresholded_image = cv2.threshold(gray_image, 50, 255, cv2.THRESH_BINARY) # Find contours in the binary image contours, _ = cv2.findContours(thresholded_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Assuming the largest contour corresponds to the ROI contour = max(contours, key=cv2.contourArea) # Get the bounding rectangle of the contour x, y, w, h = cv2.boundingRect(contour) # Crop the circular ROI using the bounding rectangle cropped_roi = image[y:y+h, x:x+w] return cropped_roi def plot_image_grid(image_paths, roi_crop=False): """ Create a grid plot with a maximum of 16 images. Args: - image_paths (list): A list of image paths to be plotted. Returns: - None """ num_images = min(len(image_paths), 16) num_rows = (num_images - 1) // 4 + 1 fig, axes = plt.subplots(num_rows, 4, figsize=(12, 3 * num_rows)) for i, ax in enumerate(axes.flat): if i < num_images: if roi_crop: img = crop_and_pad_image(image_paths[i]) else: img = mpimg.imread(image_paths[i]) ax.imshow(img) ax.axis('off') else: ax.axis('off') plt.tight_layout() plt.show()