car_classifier / app.py
bhushanp's picture
final model
ce10a39
raw
history blame
759 Bytes
import gradio as gr
import numpy as np
# Load a pre-trained image classification model
learn = load_learner('models/model.pth')
# Function to make predictions from an image
def classify_image(image):
# Make a prediction
# Decode the prediction and get the class name
name = learn.predict(image)
return name[0]
# Sample images for user to choose from
sample_images = ["AcuraTLType-S2008.jpg", "AudiR8Coupe2012.jpg", "DodgeMagnumWagon2008.jpg"]
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(label="Select an image", type="filepath"),
outputs="text",
live=True,
title="Car image classifier",
description="Upload a car image or select one of the examples below"
examples=sample_images
)
iface.launch()