import gradio as gr from fastai.vision.all import * import os # Load a pre-trained image classification model root = os.path.dirname(__file__) learn = load_learner(os.path.join(root, "models", "model.pth")) # Function to make predictions from an image def classify_image(image): # Make a prediction # Decode the prediction and get the class name name = learn.predict(image) return name[0] # Sample images for user to choose from sample_images = [os.path.join(root, sample_images, "AcuraTLType-S2008.jpg"), os.path.join(root, sample_images, "AudiR8Coupe2012.jpg"), os.path.join(root, sample_images, "DodgeMagnumWagon2008.jpg")] iface = gr.Interface( fn=classify_image, inputs=gr.Image(label="Select an image", type="filepath"), outputs="text", live=True, title="Car image classifier", description="Upload a car image or select one of the examples below", examples=sample_images ) iface.launch()