import gradio as gr from fastai.vision.all import * # import os # Load a pre-trained image classification model import pathlib plt = platform.system() if plt == 'Windows': pathlib.PosixPath = pathlib.WindowsPath if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath root = os.path.dirname(__file__) def get_label(fname): id = int(fname.name[-9:-4]) # print(id) cls = int(labels[id-1])-1 # print(cls) return name(cls) learn = load_learner("./models/model.pkl") # Function to make predictions from an image def classify_image(image): # Make a prediction # Decode the prediction and get the class name name = learn.predict(image) return name[0] # Sample images for user to choose from sample_images = ["./sample_images/AcuraTLType-S2008.jpg", "./sample_images/AudiR8Coupe2012.jpg","./sample_images/DodgeMagnumWagon2008.jpg"] iface = gr.Interface( fn=classify_image, inputs=gr.Image(label="Select an image", type="filepath"), outputs="text", live=False, title="Car image classifier", description="Upload a car image or select one of the examples below", examples=sample_images ) iface.launch()