Spaces:
Sleeping
Sleeping
import gradio as gr | |
from fastai.vision.all import * | |
import ultralytics | |
from ultralytics import YOLO | |
from PIL import Image, ImageDraw, ImageFont | |
# import os | |
# Load a pre-trained image classification model | |
import pathlib | |
plt = platform.system() | |
if plt == 'Windows': pathlib.PosixPath = pathlib.WindowsPath | |
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath | |
root = os.path.dirname(__file__) | |
detect = YOLO('./models/detect.pt') | |
mood = load_learner("./models/mood.pkl") | |
# Function to make predictions from an image | |
def process(image): | |
boxes = detect.predict(image) | |
Image.open(image) | |
image_with_boxes = image.copy() | |
draw = ImageDraw.Draw(image_with_boxes) | |
for i, box in enumerate(boxes[0].boxes.xyxy): | |
# print(box) | |
x1, y1, x2, y2 = int(box[0]), int(box[1]), int(box[2]), int(box[3]) | |
cropped_image = image.crop((x1, y1, x2, y2)) | |
resized_image = cropped_image.resize((48, 48)) | |
grayscale_image = resized_image.convert('L') | |
w = (y2+x2-y1-x1)//50 | |
pil_image = PILImage.create(grayscale_image) | |
prediction = mood.predict(pil_image) | |
# print(prediction) | |
text = prediction[0] | |
text_position = (x1 + w, y1 + w) | |
draw.rectangle([x1, y1, x2, y2], outline="red", width=w) | |
font = ImageFont.truetype("opensans.ttf", 5*w) | |
draw.text(text_position, text, fill="blue",font=font, stroke_width=int(w*0.2)) | |
return image_with_boxes | |
# Sample images for user to choose from | |
sample_images = ["./sample_images/angry.jpg", "./sample_images/office.jpg","./sample_images/friends.jpg"] | |
iface = gr.Interface( | |
fn=process, | |
inputs=gr.Image(label="Select an image", type="filepath"), | |
outputs='image', | |
live=False, | |
title="Car image classifier", | |
description="Upload a car image or select one of the examples below", | |
examples=sample_images | |
) | |
iface.launch() |