File size: 6,943 Bytes
cde7e09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import torch
#from torch.utils.serialization import load_lua
import os
import scipy.io as sio
import cv2
import math
from math import cos, sin

def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.):
    # Input is a cv2 image
    # pose_params: (pitch, yaw, roll, tdx, tdy)
    # Where (tdx, tdy) is the translation of the face.
    # For pose we have [pitch yaw roll tdx tdy tdz scale_factor]

    p = pitch * np.pi / 180
    y = -(yaw * np.pi / 180)
    r = roll * np.pi / 180
    if tdx != None and tdy != None:
        face_x = tdx - 0.50 * size 
        face_y = tdy - 0.50 * size

    else:
        height, width = img.shape[:2]
        face_x = width / 2 - 0.5 * size
        face_y = height / 2 - 0.5 * size

    x1 = size * (cos(y) * cos(r)) + face_x
    y1 = size * (cos(p) * sin(r) + cos(r) * sin(p) * sin(y)) + face_y 
    x2 = size * (-cos(y) * sin(r)) + face_x
    y2 = size * (cos(p) * cos(r) - sin(p) * sin(y) * sin(r)) + face_y
    x3 = size * (sin(y)) + face_x
    y3 = size * (-cos(y) * sin(p)) + face_y


    # Draw base in red
    cv2.line(img, (int(face_x), int(face_y)), (int(x1),int(y1)),(0,0,255),3)
    cv2.line(img, (int(face_x), int(face_y)), (int(x2),int(y2)),(0,0,255),3)
    cv2.line(img, (int(x2), int(y2)), (int(x2+x1-face_x),int(y2+y1-face_y)),(0,0,255),3)
    cv2.line(img, (int(x1), int(y1)), (int(x1+x2-face_x),int(y1+y2-face_y)),(0,0,255),3)
    # Draw pillars in blue
    cv2.line(img, (int(face_x), int(face_y)), (int(x3),int(y3)),(255,0,0),2)
    cv2.line(img, (int(x1), int(y1)), (int(x1+x3-face_x),int(y1+y3-face_y)),(255,0,0),2)
    cv2.line(img, (int(x2), int(y2)), (int(x2+x3-face_x),int(y2+y3-face_y)),(255,0,0),2)
    cv2.line(img, (int(x2+x1-face_x),int(y2+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(255,0,0),2)
    # Draw top in green
    cv2.line(img, (int(x3+x1-face_x),int(y3+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2)
    cv2.line(img, (int(x2+x3-face_x),int(y2+y3-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2)
    cv2.line(img, (int(x3), int(y3)), (int(x3+x1-face_x),int(y3+y1-face_y)),(0,255,0),2)
    cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2)

    return img

def draw_axis(img, yaw, pitch, roll, tdx=None, tdy=None, size = 100):

    pitch = pitch * np.pi / 180
    yaw = -(yaw * np.pi / 180)
    roll = roll * np.pi / 180

    if tdx != None and tdy != None:
        tdx = tdx
        tdy = tdy
    else:
        height, width = img.shape[:2]
        tdx = width / 2
        tdy = height / 2

    # X-Axis pointing to right. drawn in red
    x1 = size * (cos(yaw) * cos(roll)) + tdx
    y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy

    # Y-Axis | drawn in green
    #        v
    x2 = size * (-cos(yaw) * sin(roll)) + tdx
    y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy

    # Z-Axis (out of the screen) drawn in blue
    x3 = size * (sin(yaw)) + tdx
    y3 = size * (-cos(yaw) * sin(pitch)) + tdy

    cv2.line(img, (int(tdx), int(tdy)), (int(x1),int(y1)),(0,0,255),4)
    cv2.line(img, (int(tdx), int(tdy)), (int(x2),int(y2)),(0,255,0),4)
    cv2.line(img, (int(tdx), int(tdy)), (int(x3),int(y3)),(255,0,0),4)

    return img


def get_pose_params_from_mat(mat_path):
    # This functions gets the pose parameters from the .mat
    # Annotations that come with the Pose_300W_LP dataset.
    mat = sio.loadmat(mat_path)
    # [pitch yaw roll tdx tdy tdz scale_factor]
    pre_pose_params = mat['Pose_Para'][0]
    # Get [pitch, yaw, roll, tdx, tdy]
    pose_params = pre_pose_params[:5]
    return pose_params

def get_ypr_from_mat(mat_path):
    # Get yaw, pitch, roll from .mat annotation.
    # They are in radians
    mat = sio.loadmat(mat_path)
    # [pitch yaw roll tdx tdy tdz scale_factor]
    pre_pose_params = mat['Pose_Para'][0]
    # Get [pitch, yaw, roll]
    pose_params = pre_pose_params[:3]
    return pose_params

def get_pt2d_from_mat(mat_path):
    # Get 2D landmarks
    mat = sio.loadmat(mat_path)
    pt2d = mat['pt2d']
    return pt2d

# batch*n
def normalize_vector( v, use_gpu=True):
    batch=v.shape[0]
    v_mag = torch.sqrt(v.pow(2).sum(1))# batch
    if use_gpu:
        v_mag = torch.max(v_mag, torch.autograd.Variable(torch.FloatTensor([1e-8]).cuda()))
    else:
        v_mag = torch.max(v_mag, torch.autograd.Variable(torch.FloatTensor([1e-8])))  
    v_mag = v_mag.view(batch,1).expand(batch,v.shape[1])
    v = v/v_mag
    return v
    
# u, v batch*n
def cross_product( u, v):
    batch = u.shape[0]
    #print (u.shape)
    #print (v.shape)
    i = u[:,1]*v[:,2] - u[:,2]*v[:,1]
    j = u[:,2]*v[:,0] - u[:,0]*v[:,2]
    k = u[:,0]*v[:,1] - u[:,1]*v[:,0]
        
    out = torch.cat((i.view(batch,1), j.view(batch,1), k.view(batch,1)),1)#batch*3
        
    return out
        
    
#poses batch*6
#poses
def compute_rotation_matrix_from_ortho6d(poses, use_gpu=True):
    x_raw = poses[:,0:3]#batch*3
    y_raw = poses[:,3:6]#batch*3
        
    x = normalize_vector(x_raw, use_gpu) #batch*3
    z = cross_product(x,y_raw) #batch*3
    z = normalize_vector(z, use_gpu)#batch*3
    y = cross_product(z,x)#batch*3
        
    x = x.view(-1,3,1)
    y = y.view(-1,3,1)
    z = z.view(-1,3,1)
    matrix = torch.cat((x,y,z), 2) #batch*3*3
    return matrix


#input batch*4*4 or batch*3*3
#output torch batch*3 x, y, z in radiant
#the rotation is in the sequence of x,y,z
def compute_euler_angles_from_rotation_matrices(rotation_matrices, use_gpu=True):
    batch=rotation_matrices.shape[0]
    R=rotation_matrices
    sy = torch.sqrt(R[:,0,0]*R[:,0,0]+R[:,1,0]*R[:,1,0])
    singular= sy<1e-6
    singular=singular.float()
        
    x=torch.atan2(R[:,2,1], R[:,2,2])
    y=torch.atan2(-R[:,2,0], sy)
    z=torch.atan2(R[:,1,0],R[:,0,0])
    
    xs=torch.atan2(-R[:,1,2], R[:,1,1])
    ys=torch.atan2(-R[:,2,0], sy)
    zs=R[:,1,0]*0
        
    if use_gpu:
        out_euler=torch.autograd.Variable(torch.zeros(batch,3).cuda())
    else:
        out_euler=torch.autograd.Variable(torch.zeros(batch,3))  
    out_euler[:,0]=x*(1-singular)+xs*singular
    out_euler[:,1]=y*(1-singular)+ys*singular
    out_euler[:,2]=z*(1-singular)+zs*singular
        
    return out_euler


def get_R(x,y,z):
    ''' Get rotation matrix from three rotation angles (radians). right-handed.
    Args:
        angles: [3,]. x, y, z angles
    Returns:
        R: [3, 3]. rotation matrix.
    '''
    # x
    Rx = np.array([[1, 0, 0],
                   [0, np.cos(x), -np.sin(x)],
                   [0, np.sin(x), np.cos(x)]])
    # y
    Ry = np.array([[np.cos(y), 0, np.sin(y)],
                   [0, 1, 0],
                   [-np.sin(y), 0, np.cos(y)]])
    # z
    Rz = np.array([[np.cos(z), -np.sin(z), 0],
                   [np.sin(z), np.cos(z), 0],
                   [0, 0, 1]])

    R = Rz.dot(Ry.dot(Rx))
    return R