Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
#from torch.utils.serialization import load_lua | |
import os | |
import scipy.io as sio | |
import cv2 | |
import math | |
from math import cos, sin | |
def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.): | |
# Input is a cv2 image | |
# pose_params: (pitch, yaw, roll, tdx, tdy) | |
# Where (tdx, tdy) is the translation of the face. | |
# For pose we have [pitch yaw roll tdx tdy tdz scale_factor] | |
p = pitch * np.pi / 180 | |
y = -(yaw * np.pi / 180) | |
r = roll * np.pi / 180 | |
if tdx != None and tdy != None: | |
face_x = tdx - 0.50 * size | |
face_y = tdy - 0.50 * size | |
else: | |
height, width = img.shape[:2] | |
face_x = width / 2 - 0.5 * size | |
face_y = height / 2 - 0.5 * size | |
x1 = size * (cos(y) * cos(r)) + face_x | |
y1 = size * (cos(p) * sin(r) + cos(r) * sin(p) * sin(y)) + face_y | |
x2 = size * (-cos(y) * sin(r)) + face_x | |
y2 = size * (cos(p) * cos(r) - sin(p) * sin(y) * sin(r)) + face_y | |
x3 = size * (sin(y)) + face_x | |
y3 = size * (-cos(y) * sin(p)) + face_y | |
# Draw base in red | |
cv2.line(img, (int(face_x), int(face_y)), (int(x1),int(y1)),(0,0,255),3) | |
cv2.line(img, (int(face_x), int(face_y)), (int(x2),int(y2)),(0,0,255),3) | |
cv2.line(img, (int(x2), int(y2)), (int(x2+x1-face_x),int(y2+y1-face_y)),(0,0,255),3) | |
cv2.line(img, (int(x1), int(y1)), (int(x1+x2-face_x),int(y1+y2-face_y)),(0,0,255),3) | |
# Draw pillars in blue | |
cv2.line(img, (int(face_x), int(face_y)), (int(x3),int(y3)),(255,0,0),2) | |
cv2.line(img, (int(x1), int(y1)), (int(x1+x3-face_x),int(y1+y3-face_y)),(255,0,0),2) | |
cv2.line(img, (int(x2), int(y2)), (int(x2+x3-face_x),int(y2+y3-face_y)),(255,0,0),2) | |
cv2.line(img, (int(x2+x1-face_x),int(y2+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(255,0,0),2) | |
# Draw top in green | |
cv2.line(img, (int(x3+x1-face_x),int(y3+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2) | |
cv2.line(img, (int(x2+x3-face_x),int(y2+y3-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2) | |
cv2.line(img, (int(x3), int(y3)), (int(x3+x1-face_x),int(y3+y1-face_y)),(0,255,0),2) | |
cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2) | |
return img | |
def draw_axis(img, yaw, pitch, roll, tdx=None, tdy=None, size = 100): | |
pitch = pitch * np.pi / 180 | |
yaw = -(yaw * np.pi / 180) | |
roll = roll * np.pi / 180 | |
if tdx != None and tdy != None: | |
tdx = tdx | |
tdy = tdy | |
else: | |
height, width = img.shape[:2] | |
tdx = width / 2 | |
tdy = height / 2 | |
# X-Axis pointing to right. drawn in red | |
x1 = size * (cos(yaw) * cos(roll)) + tdx | |
y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy | |
# Y-Axis | drawn in green | |
# v | |
x2 = size * (-cos(yaw) * sin(roll)) + tdx | |
y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy | |
# Z-Axis (out of the screen) drawn in blue | |
x3 = size * (sin(yaw)) + tdx | |
y3 = size * (-cos(yaw) * sin(pitch)) + tdy | |
cv2.line(img, (int(tdx), int(tdy)), (int(x1),int(y1)),(0,0,255),4) | |
cv2.line(img, (int(tdx), int(tdy)), (int(x2),int(y2)),(0,255,0),4) | |
cv2.line(img, (int(tdx), int(tdy)), (int(x3),int(y3)),(255,0,0),4) | |
return img | |
def get_pose_params_from_mat(mat_path): | |
# This functions gets the pose parameters from the .mat | |
# Annotations that come with the Pose_300W_LP dataset. | |
mat = sio.loadmat(mat_path) | |
# [pitch yaw roll tdx tdy tdz scale_factor] | |
pre_pose_params = mat['Pose_Para'][0] | |
# Get [pitch, yaw, roll, tdx, tdy] | |
pose_params = pre_pose_params[:5] | |
return pose_params | |
def get_ypr_from_mat(mat_path): | |
# Get yaw, pitch, roll from .mat annotation. | |
# They are in radians | |
mat = sio.loadmat(mat_path) | |
# [pitch yaw roll tdx tdy tdz scale_factor] | |
pre_pose_params = mat['Pose_Para'][0] | |
# Get [pitch, yaw, roll] | |
pose_params = pre_pose_params[:3] | |
return pose_params | |
def get_pt2d_from_mat(mat_path): | |
# Get 2D landmarks | |
mat = sio.loadmat(mat_path) | |
pt2d = mat['pt2d'] | |
return pt2d | |
# batch*n | |
def normalize_vector( v, use_gpu=True): | |
batch=v.shape[0] | |
v_mag = torch.sqrt(v.pow(2).sum(1))# batch | |
if use_gpu: | |
v_mag = torch.max(v_mag, torch.autograd.Variable(torch.FloatTensor([1e-8]).cuda())) | |
else: | |
v_mag = torch.max(v_mag, torch.autograd.Variable(torch.FloatTensor([1e-8]))) | |
v_mag = v_mag.view(batch,1).expand(batch,v.shape[1]) | |
v = v/v_mag | |
return v | |
# u, v batch*n | |
def cross_product( u, v): | |
batch = u.shape[0] | |
#print (u.shape) | |
#print (v.shape) | |
i = u[:,1]*v[:,2] - u[:,2]*v[:,1] | |
j = u[:,2]*v[:,0] - u[:,0]*v[:,2] | |
k = u[:,0]*v[:,1] - u[:,1]*v[:,0] | |
out = torch.cat((i.view(batch,1), j.view(batch,1), k.view(batch,1)),1)#batch*3 | |
return out | |
#poses batch*6 | |
#poses | |
def compute_rotation_matrix_from_ortho6d(poses, use_gpu=True): | |
x_raw = poses[:,0:3]#batch*3 | |
y_raw = poses[:,3:6]#batch*3 | |
x = normalize_vector(x_raw, use_gpu) #batch*3 | |
z = cross_product(x,y_raw) #batch*3 | |
z = normalize_vector(z, use_gpu)#batch*3 | |
y = cross_product(z,x)#batch*3 | |
x = x.view(-1,3,1) | |
y = y.view(-1,3,1) | |
z = z.view(-1,3,1) | |
matrix = torch.cat((x,y,z), 2) #batch*3*3 | |
return matrix | |
#input batch*4*4 or batch*3*3 | |
#output torch batch*3 x, y, z in radiant | |
#the rotation is in the sequence of x,y,z | |
def compute_euler_angles_from_rotation_matrices(rotation_matrices, use_gpu=True): | |
batch=rotation_matrices.shape[0] | |
R=rotation_matrices | |
sy = torch.sqrt(R[:,0,0]*R[:,0,0]+R[:,1,0]*R[:,1,0]) | |
singular= sy<1e-6 | |
singular=singular.float() | |
x=torch.atan2(R[:,2,1], R[:,2,2]) | |
y=torch.atan2(-R[:,2,0], sy) | |
z=torch.atan2(R[:,1,0],R[:,0,0]) | |
xs=torch.atan2(-R[:,1,2], R[:,1,1]) | |
ys=torch.atan2(-R[:,2,0], sy) | |
zs=R[:,1,0]*0 | |
if use_gpu: | |
out_euler=torch.autograd.Variable(torch.zeros(batch,3).cuda()) | |
else: | |
out_euler=torch.autograd.Variable(torch.zeros(batch,3)) | |
out_euler[:,0]=x*(1-singular)+xs*singular | |
out_euler[:,1]=y*(1-singular)+ys*singular | |
out_euler[:,2]=z*(1-singular)+zs*singular | |
return out_euler | |
def get_R(x,y,z): | |
''' Get rotation matrix from three rotation angles (radians). right-handed. | |
Args: | |
angles: [3,]. x, y, z angles | |
Returns: | |
R: [3, 3]. rotation matrix. | |
''' | |
# x | |
Rx = np.array([[1, 0, 0], | |
[0, np.cos(x), -np.sin(x)], | |
[0, np.sin(x), np.cos(x)]]) | |
# y | |
Ry = np.array([[np.cos(y), 0, np.sin(y)], | |
[0, 1, 0], | |
[-np.sin(y), 0, np.cos(y)]]) | |
# z | |
Rz = np.array([[np.cos(z), -np.sin(z), 0], | |
[np.sin(z), np.cos(z), 0], | |
[0, 0, 1]]) | |
R = Rz.dot(Ry.dot(Rx)) | |
return R |