import numpy as np import torch #from torch.utils.serialization import load_lua import os import scipy.io as sio import cv2 import math from math import cos, sin def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.): # Input is a cv2 image # pose_params: (pitch, yaw, roll, tdx, tdy) # Where (tdx, tdy) is the translation of the face. # For pose we have [pitch yaw roll tdx tdy tdz scale_factor] p = pitch * np.pi / 180 y = -(yaw * np.pi / 180) r = roll * np.pi / 180 if tdx != None and tdy != None: face_x = tdx - 0.50 * size face_y = tdy - 0.50 * size else: height, width = img.shape[:2] face_x = width / 2 - 0.5 * size face_y = height / 2 - 0.5 * size x1 = size * (cos(y) * cos(r)) + face_x y1 = size * (cos(p) * sin(r) + cos(r) * sin(p) * sin(y)) + face_y x2 = size * (-cos(y) * sin(r)) + face_x y2 = size * (cos(p) * cos(r) - sin(p) * sin(y) * sin(r)) + face_y x3 = size * (sin(y)) + face_x y3 = size * (-cos(y) * sin(p)) + face_y # Draw base in red cv2.line(img, (int(face_x), int(face_y)), (int(x1),int(y1)),(0,0,255),3) cv2.line(img, (int(face_x), int(face_y)), (int(x2),int(y2)),(0,0,255),3) cv2.line(img, (int(x2), int(y2)), (int(x2+x1-face_x),int(y2+y1-face_y)),(0,0,255),3) cv2.line(img, (int(x1), int(y1)), (int(x1+x2-face_x),int(y1+y2-face_y)),(0,0,255),3) # Draw pillars in blue cv2.line(img, (int(face_x), int(face_y)), (int(x3),int(y3)),(255,0,0),2) cv2.line(img, (int(x1), int(y1)), (int(x1+x3-face_x),int(y1+y3-face_y)),(255,0,0),2) cv2.line(img, (int(x2), int(y2)), (int(x2+x3-face_x),int(y2+y3-face_y)),(255,0,0),2) cv2.line(img, (int(x2+x1-face_x),int(y2+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(255,0,0),2) # Draw top in green cv2.line(img, (int(x3+x1-face_x),int(y3+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2) cv2.line(img, (int(x2+x3-face_x),int(y2+y3-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2) cv2.line(img, (int(x3), int(y3)), (int(x3+x1-face_x),int(y3+y1-face_y)),(0,255,0),2) cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2) return img def draw_axis(img, yaw, pitch, roll, tdx=None, tdy=None, size = 100): pitch = pitch * np.pi / 180 yaw = -(yaw * np.pi / 180) roll = roll * np.pi / 180 if tdx != None and tdy != None: tdx = tdx tdy = tdy else: height, width = img.shape[:2] tdx = width / 2 tdy = height / 2 # X-Axis pointing to right. drawn in red x1 = size * (cos(yaw) * cos(roll)) + tdx y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy # Y-Axis | drawn in green # v x2 = size * (-cos(yaw) * sin(roll)) + tdx y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy # Z-Axis (out of the screen) drawn in blue x3 = size * (sin(yaw)) + tdx y3 = size * (-cos(yaw) * sin(pitch)) + tdy cv2.line(img, (int(tdx), int(tdy)), (int(x1),int(y1)),(0,0,255),4) cv2.line(img, (int(tdx), int(tdy)), (int(x2),int(y2)),(0,255,0),4) cv2.line(img, (int(tdx), int(tdy)), (int(x3),int(y3)),(255,0,0),4) return img def get_pose_params_from_mat(mat_path): # This functions gets the pose parameters from the .mat # Annotations that come with the Pose_300W_LP dataset. mat = sio.loadmat(mat_path) # [pitch yaw roll tdx tdy tdz scale_factor] pre_pose_params = mat['Pose_Para'][0] # Get [pitch, yaw, roll, tdx, tdy] pose_params = pre_pose_params[:5] return pose_params def get_ypr_from_mat(mat_path): # Get yaw, pitch, roll from .mat annotation. # They are in radians mat = sio.loadmat(mat_path) # [pitch yaw roll tdx tdy tdz scale_factor] pre_pose_params = mat['Pose_Para'][0] # Get [pitch, yaw, roll] pose_params = pre_pose_params[:3] return pose_params def get_pt2d_from_mat(mat_path): # Get 2D landmarks mat = sio.loadmat(mat_path) pt2d = mat['pt2d'] return pt2d # batch*n def normalize_vector( v, use_gpu=True): batch=v.shape[0] v_mag = torch.sqrt(v.pow(2).sum(1))# batch if use_gpu: v_mag = torch.max(v_mag, torch.autograd.Variable(torch.FloatTensor([1e-8]).cuda())) else: v_mag = torch.max(v_mag, torch.autograd.Variable(torch.FloatTensor([1e-8]))) v_mag = v_mag.view(batch,1).expand(batch,v.shape[1]) v = v/v_mag return v # u, v batch*n def cross_product( u, v): batch = u.shape[0] #print (u.shape) #print (v.shape) i = u[:,1]*v[:,2] - u[:,2]*v[:,1] j = u[:,2]*v[:,0] - u[:,0]*v[:,2] k = u[:,0]*v[:,1] - u[:,1]*v[:,0] out = torch.cat((i.view(batch,1), j.view(batch,1), k.view(batch,1)),1)#batch*3 return out #poses batch*6 #poses def compute_rotation_matrix_from_ortho6d(poses, use_gpu=True): x_raw = poses[:,0:3]#batch*3 y_raw = poses[:,3:6]#batch*3 x = normalize_vector(x_raw, use_gpu) #batch*3 z = cross_product(x,y_raw) #batch*3 z = normalize_vector(z, use_gpu)#batch*3 y = cross_product(z,x)#batch*3 x = x.view(-1,3,1) y = y.view(-1,3,1) z = z.view(-1,3,1) matrix = torch.cat((x,y,z), 2) #batch*3*3 return matrix #input batch*4*4 or batch*3*3 #output torch batch*3 x, y, z in radiant #the rotation is in the sequence of x,y,z def compute_euler_angles_from_rotation_matrices(rotation_matrices, use_gpu=True): batch=rotation_matrices.shape[0] R=rotation_matrices sy = torch.sqrt(R[:,0,0]*R[:,0,0]+R[:,1,0]*R[:,1,0]) singular= sy<1e-6 singular=singular.float() x=torch.atan2(R[:,2,1], R[:,2,2]) y=torch.atan2(-R[:,2,0], sy) z=torch.atan2(R[:,1,0],R[:,0,0]) xs=torch.atan2(-R[:,1,2], R[:,1,1]) ys=torch.atan2(-R[:,2,0], sy) zs=R[:,1,0]*0 if use_gpu: out_euler=torch.autograd.Variable(torch.zeros(batch,3).cuda()) else: out_euler=torch.autograd.Variable(torch.zeros(batch,3)) out_euler[:,0]=x*(1-singular)+xs*singular out_euler[:,1]=y*(1-singular)+ys*singular out_euler[:,2]=z*(1-singular)+zs*singular return out_euler def get_R(x,y,z): ''' Get rotation matrix from three rotation angles (radians). right-handed. Args: angles: [3,]. x, y, z angles Returns: R: [3, 3]. rotation matrix. ''' # x Rx = np.array([[1, 0, 0], [0, np.cos(x), -np.sin(x)], [0, np.sin(x), np.cos(x)]]) # y Ry = np.array([[np.cos(y), 0, np.sin(y)], [0, 1, 0], [-np.sin(y), 0, np.cos(y)]]) # z Rz = np.array([[np.cos(z), -np.sin(z), 0], [np.sin(z), np.cos(z), 0], [0, 0, 1]]) R = Rz.dot(Ry.dot(Rx)) return R