Spaces:
Runtime error
Runtime error
import transformers | |
import torch | |
import tokenizers | |
import gradio as gr | |
import re | |
def get_model(model_name, model_path='pytorch_model.bin'): | |
tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_name) | |
model = transformers.OPTForCausalLM.from_pretrained(model_name) | |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) | |
model.eval() | |
return model, tokenizer | |
def predict(text, model, tokenizer, n_beams=5, temperature=2.5, top_p=0.8, length_of_generated=300): | |
text += '\n' | |
input_ids = tokenizer.encode(text, return_tensors="pt") | |
length_of_prompt = len(input_ids[0]) | |
with torch.no_grad(): | |
out = model.generate(input_ids, | |
do_sample=True, | |
num_beams=n_beams, | |
temperature=temperature, | |
top_p=top_p, | |
max_length=length_of_prompt + length_of_generated, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
return list(map(tokenizer.decode, out))[0] | |
model, tokenizer = get_model('big-kek/NeuroSkeptic', 'OPT13b-skeptic.bin') | |
example = 'Who is Bill Gates really?' | |
demo = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.components.Textbox(label="what is your interest?",value = example), | |
], | |
outputs=[ | |
gr.components.Textbox(label="oh! my ...",interactive = False), | |
], | |
) | |
demo.launch() | |