File size: 8,026 Bytes
c94b761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
"""
BigBIO Dataset Explorer Demo
"""

from collections import Counter
from collections import defaultdict
import string

from datasets import load_dataset
from loguru import logger
import numpy as np
import pandas as pd
import plotly.express as px
import spacy
from spacy import displacy
import streamlit as st

from bigbio.dataloader import BigBioConfigHelpers
from bigbio.hf_maps import BATCH_MAPPERS_TEXT_FROM_SCHEMA
from sklearn.feature_extraction.text import CountVectorizer


st.set_page_config(layout="wide")


IBM_COLORS = [
    "#648fff",
    "#dc267f",
    "#ffb000",
    "#fe6100",
    "#785ef0",
    "#000000",
    "#ffffff",
]


def get_html(html: str):
    """Convert HTML so it can be rendered."""
    WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem;\
 margin-bottom: 2.5rem">{}</div>"""
    # Newlines seem to mess with the rendering
    html = html.replace("\n", " ")
    return WRAPPER.format(html)


@st.cache()
def load_conhelps():
    conhelps = BigBioConfigHelpers()
    logger.info(conhelps)
    conhelps = conhelps.filtered(lambda x: not x.is_large)
    conhelps = conhelps.filtered(lambda x: x.is_bigbio_schema)
    conhelps = conhelps.filtered(lambda x: not x.is_local)
    return conhelps


def update_axis_font(fig):
    fig.update_layout(
        xaxis = dict(title_font = dict(size=20)),
        yaxis = dict(title_font = dict(size=20)),
    )
    return fig


def draw_histogram(hist_data, col_name, histnorm=None, nbins=25, xmax=None, loc=st):
    fig = px.histogram(
        hist_data,
        x=col_name,
        color="split",
        color_discrete_sequence=IBM_COLORS,
        marginal="box",  # or violin, rug
        barmode="group",
        hover_data=hist_data.columns,
        histnorm=histnorm,
        nbins=nbins,
        range_x=(0, xmax) if xmax else None,
    )
    fig = update_axis_font(fig)
    loc.plotly_chart(fig, use_container_width=True)


def draw_bar(bar_data, x, y, loc=st):
    fig = px.bar(
        bar_data,
        x=x,
        y=y,
        color="split",
        color_discrete_sequence=IBM_COLORS,
        barmode="group",
        hover_data=bar_data.columns,
    )
    fig = update_axis_font(fig)
    loc.plotly_chart(fig, use_container_width=True)


def parse_metrics(metadata, loc):
    for split, meta in metadata.items():
        for key, val in meta.__dict__.items():
            if isinstance(val, int):
                loc.metric(label=f"{split}-{key}", value=val)


def parse_counters(metadata):
    meta = metadata["train"]  # using the training counter to fetch the names
    counters = []
    for k, v in meta.__dict__.items():
        if "counter" in k and len(v) > 0:
            counters.append(k)
    return counters


# generate the df for histogram
def parse_label_counter(metadata, counter_type):
    hist_data = []
    for split, m in metadata.items():
        metadata_counter = getattr(m, counter_type)
        for k, v in metadata_counter.items():
            row = {}
            row["labels"] = k
            row[counter_type] = v
            row["split"] = split
            hist_data.append(row)
    return pd.DataFrame(hist_data)




# load BigBioConfigHelpers
#==================================
logger.info("about to call load_conhelps")
conhelps = load_conhelps()
logger.info("exiting call load_conhelps")
config_name_to_conhelp = {ch.config.name: ch for ch in conhelps}
ds_display_names = sorted(list(set([ch.display_name for ch in conhelps])))
ds_display_name_to_config_names = defaultdict(list)
for ch in conhelps:
    ds_display_name_to_config_names[ch.display_name].append(ch.config.name)


# dataset selection
#==================================

st.sidebar.title("Dataset Selection")
ds_display_name = st.sidebar.selectbox("dataset name", ds_display_names, index=0)

config_names = ds_display_name_to_config_names[ds_display_name]
config_name = st.sidebar.selectbox("config name", config_names)
conhelp = config_name_to_conhelp[config_name]


st.header(f"Dataset stats for {ds_display_name}")


@st.cache()
def load_data(conhelp):
    metadata = conhelp.get_metadata()
    dsd = conhelp.load_dataset()
    dsd = dsd.map(
        BATCH_MAPPERS_TEXT_FROM_SCHEMA[conhelp.bigbio_schema_caps.lower()],
        batched=True)

    return dsd, metadata

@st.cache()
def count_vectorize(dsd):
    cv = CountVectorizer()
    xcvs = {}
    dfs_tok_per_samp = []
    for split, ds in dsd.items():
        xcv = cv.fit_transform(ds['text'])
        token_counts = np.asarray(xcv.sum(axis=1)).flatten()
        df = pd.DataFrame(token_counts, columns=["tokens per sample"])
        df["split"] = split
        dfs_tok_per_samp.append(df)
        xcvs[split] = xcv
    df_tok_per_samp = pd.concat(dfs_tok_per_samp)
    return xcvs, df_tok_per_samp


dsd_load_state = st.info(f"Loading {ds_display_name} - {config_name} ...")
dsd, metadata = load_data(conhelp)
dsd_load_state.empty()

cv_load_state = st.info(f"Count Vectorizing {ds_display_name} - {config_name} ...")
xcvs, df_tok_per_samp = count_vectorize(dsd)
cv_load_state.empty()


st.sidebar.subheader(f"BigBIO Schema = {conhelp.bigbio_schema_caps}")

st.sidebar.subheader("Tasks Supported by Dataset")
tasks = conhelp.tasks
tasks = [string.capwords(task.replace("_", " ")) for task in tasks]
st.sidebar.markdown(
    """
    {}
    """.format(
        "\n".join([
            f"- {task}" for task in tasks
        ]))
)

st.sidebar.subheader("Languages")
langs = conhelp.languages
st.sidebar.markdown(
    """
    {}
    """.format("\n".join([f"- {lang}" for lang in langs]))
)

st.sidebar.subheader("Home Page")
st.sidebar.write(conhelp.homepage)

st.sidebar.subheader("Description")
st.sidebar.write(conhelp.description)

st.sidebar.subheader("Citation")
st.sidebar.markdown(f"""\
```
{conhelp.citation}
````
"""
                    )
st.sidebar.subheader("Counts")
parse_metrics(metadata, st.sidebar)



# dataframe display
#if "train" in dsd.keys():
#    st.subheader("Sample Preview")
#    df = pd.DataFrame.from_dict(dsd["train"])
#    st.write(df.head(10))



# draw token distribution
st.subheader("Sample Length Distribution")
max_xmax = int(df_tok_per_samp["tokens per sample"].max())
xmax = st.slider("xmax", min_value=0, max_value=max_xmax, value=max_xmax)
histnorms = ['percent', 'probability', 'density', 'probability density', None]
histnorm = st.selectbox("histnorm", histnorms)
draw_histogram(df_tok_per_samp, "tokens per sample", histnorm=histnorm, xmax=xmax, loc=st)



st.subheader("Counter Distributions")
counters = parse_counters(metadata)
counter_type = st.selectbox("counter_type", counters)
label_df = parse_label_counter(metadata, counter_type)
label_max = int(label_df[counter_type].max() - 1)
label_min = int(label_df[counter_type].min())
filter_value = st.slider("minimum cutoff", label_min, label_max)
label_df = label_df[label_df[counter_type] >= filter_value]
# draw bar chart for counter
draw_bar(label_df, "labels", counter_type, st)


st.subheader("Sample Explorer")
split = st.selectbox("split", list(dsd.keys()))
sample_index = st.number_input(
    "sample index",
    min_value=0,
    max_value=len(dsd[split])-1,
    value=0,
)

sample = dsd[split][sample_index]


if conhelp.bigbio_schema_caps == "KB":
    nlp = spacy.blank("en")
    text = sample["text"]
    doc = nlp(text)
    spans = []
    for bb_ent in sample["entities"]:
        span = doc.char_span(
            bb_ent["offsets"][0][0],
            bb_ent["offsets"][0][1],
            label=bb_ent["type"],
        )
        spans.append(span)
    doc.spans["sc"] = spans
    html = displacy.render(
        doc,
        style="span",
        options={
            "colors": {
                et: clr for et,clr in zip(
                    metadata[split].entities_type_counter.keys(),
                    IBM_COLORS*10
                )
            }
        },
    )
    style = "<style>mark.entity { display: inline-block }</style>"
    st.write(f"{style}{get_html(html)}", unsafe_allow_html=True)


st.write(sample)