File size: 5,175 Bytes
80c91d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from dataclasses import dataclass, make_dataclass
from enum import Enum
import json
import logging
from datetime import datetime
import pandas as pd


# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

# Convert ISO 8601 dates to datetime objects for comparison
def parse_iso8601_datetime(date_str):
    if date_str.endswith('Z'):
        date_str = date_str[:-1] + '+00:00'
    return datetime.fromisoformat(date_str)

def parse_datetime(datetime_str):
    formats = [
        "%Y-%m-%dT%H-%M-%S.%f",  # Format with dashes
        "%Y-%m-%dT%H:%M:%S.%f",  # Standard format with colons
        "%Y-%m-%dT%H %M %S.%f",  # Spaces as separator
    ]

    for fmt in formats:
        try:
            return datetime.strptime(datetime_str, fmt)
        except ValueError:
            continue
    # in rare cases set unix start time for files with incorrect time (legacy files)
    logging.error(f"No valid date format found for: {datetime_str}")
    return datetime(1970, 1, 1)


def load_json_data(file_path):
    """Safely load JSON data from a file."""
    try:
        with open(file_path, "r") as file:
            return json.load(file)
    except json.JSONDecodeError:
        print(f"Error reading JSON from {file_path}")
        return None  # Or raise an exception


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


column_map = {
    "T": "T",
    "model": "Model",
    "type": "Model Type",
    "size_range": "Size Range",
    "complete": "Complete",
    "instruct": "Instruct",
    "average": "Average",
    "elo_mle": "Elo Rating",
    "link": "Link",
    "act_param": "#Act Params (B)",
    "size": "#Params (B)",
    "moe": "MoE",
    # "lazy": "Lazy",
    "openness": "Openness",
    # "direct_complete": "Direct Completion",
}

type_map = {
    "🔶": "🔶 Chat Models (RLHF, DPO, IFT, ...)",
    "🟢": "🟢 Base Models"
}

moe_map = {
    True: "MoE",
    False: "Dense"
}
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass(frozen=True)
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False
    dummy: bool = False


auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["T", ColumnContent, ColumnContent(column_map["T"], "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent(column_map["model"], "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["type", ColumnContent, ColumnContent(column_map["type"], "str", False, True)])
auto_eval_column_dict.append(["size_range", ColumnContent, ColumnContent(column_map["size_range"], "str", False, True)])
# Scores
auto_eval_column_dict.append(["complete", ColumnContent, ColumnContent(column_map["complete"], "number", True)])
auto_eval_column_dict.append(["instruct", ColumnContent, ColumnContent(column_map["instruct"], "number", True)])
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent(column_map["average"], "number", True)])
auto_eval_column_dict.append(["elo_mle", ColumnContent, ColumnContent(column_map["elo_mle"], "number", True)])

# Model information
auto_eval_column_dict.append(["act_param", ColumnContent, ColumnContent(column_map["act_param"], "number", True)])
auto_eval_column_dict.append(["link", ColumnContent, ColumnContent(column_map["link"], "str", False, True)])
auto_eval_column_dict.append(["size", ColumnContent, ColumnContent(column_map["size"], "number", False)])
# auto_eval_column_dict.append(["lazy", ColumnContent, ColumnContent(column_map["lazy"], "bool", False, True)])
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent(column_map["moe"], "str", False, True)])
auto_eval_column_dict.append(["openness", ColumnContent, ColumnContent(column_map["openness"], "str", False, True)])
# auto_eval_column_dict.append(["direct_complete", ColumnContent, ColumnContent(column_map["direct_complete"], "bool", False)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)


@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model_link = ColumnContent("link", "markdown", True)
    model_name = ColumnContent("model", "str", True)

@dataclass
class ModelDetails:
    name: str
    symbol: str = ""  # emoji, only for the model type


# Column selection
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]


NUMERIC_INTERVALS = {
    "?": pd.Interval(-1, 0, closed="right"),
    "~1.5": pd.Interval(0, 2, closed="right"),
    "~3": pd.Interval(2, 4, closed="right"),
    "~7": pd.Interval(4, 9, closed="right"),
    "~13": pd.Interval(9, 20, closed="right"),
    "~35": pd.Interval(20, 45, closed="right"),
    "~60": pd.Interval(45, 70, closed="right"),
    "70+": pd.Interval(70, 10000, closed="right"),
}