Spaces:
Runtime error
Runtime error
import gradio as gr | |
import subprocess | |
import sys | |
import os | |
import threading | |
import time | |
import uuid | |
import glob | |
import shutil | |
from pathlib import Path | |
from huggingface_hub import HfApi | |
from apscheduler.schedulers.background import BackgroundScheduler | |
default_command = "bigcodebench.evaluate" | |
is_running = False | |
def generate_command( | |
jsonl_file, split, subset, parallel, | |
min_time_limit, max_as_limit, max_data_limit, max_stack_limit, | |
check_gt_only, no_gt | |
): | |
command = [default_command] | |
if jsonl_file is not None: | |
# Copy the uploaded file to the current directory | |
local_filename = os.path.basename(jsonl_file.name) | |
shutil.copy(jsonl_file.name, local_filename) | |
command.extend(["--samples", local_filename]) | |
command.extend(["--split", split, "--subset", subset]) | |
if parallel is not None and parallel != 0: | |
command.extend(["--parallel", str(int(parallel))]) | |
command.extend([ | |
"--min-time-limit", str(min_time_limit), | |
"--max-as-limit", str(int(max_as_limit)), | |
"--max-data-limit", str(int(max_data_limit)), | |
"--max-stack-limit", str(int(max_stack_limit)) | |
]) | |
if check_gt_only: | |
command.append("--check-gt-only") | |
if no_gt: | |
command.append("--no-gt") | |
return " ".join(command) | |
def cleanup_previous_files(jsonl_file): | |
if jsonl_file is not None: | |
file_list = ['Dockerfile', 'app.py', 'README.md', os.path.basename(jsonl_file.name), "__pycache__"] | |
else: | |
file_list = ['Dockerfile', 'app.py', 'README.md', "__pycache__"] | |
for file in glob.glob("*"): | |
try: | |
if file not in file_list: | |
os.remove(file) | |
except Exception as e: | |
print(f"Error during cleanup of {file}: {e}") | |
def find_result_file(): | |
json_files = glob.glob("*.json") | |
if json_files: | |
return max(json_files, key=os.path.getmtime) | |
return None | |
def run_bigcodebench(command): | |
global is_running | |
if is_running: | |
yield "A command is already running. Please wait for it to finish.\n" | |
return | |
is_running = True | |
try: | |
yield f"Executing command: {command}\n" | |
process = subprocess.Popen(command.split(), stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) | |
def kill_process(): | |
if process.poll() is None: # If the process is still running | |
process.terminate() | |
is_running = False | |
yield "Process terminated after 12 minutes timeout.\n" | |
# Start a timer to kill the process after 12 minutes | |
timer = threading.Timer(720, kill_process) | |
timer.start() | |
for line in process.stdout: | |
yield line | |
# process.wait() | |
timer.cancel() | |
if process.returncode != 0: | |
yield f"Error: Command exited with status {process.returncode}\n" | |
yield "Evaluation completed.\n" | |
result_file = find_result_file() | |
if result_file: | |
yield f"Result file found: {result_file}\n" | |
else: | |
yield "No result file found.\n" | |
finally: | |
is_running = False | |
def stream_logs(command, jsonl_file=None): | |
global is_running | |
if is_running: | |
yield "A command is already running. Please wait for it to finish.\n" | |
return | |
cleanup_previous_files(jsonl_file) | |
yield "Cleaned up previous files.\n" | |
log_content = [] | |
for log_line in run_bigcodebench(command): | |
log_content.append(log_line) | |
yield "".join(log_content) | |
with gr.Blocks() as demo: | |
gr.Markdown("# BigCodeBench Evaluator") | |
with gr.Row(): | |
jsonl_file = gr.File(label="Upload JSONL file", file_types=[".jsonl"]) | |
split = gr.Dropdown(choices=["complete", "instruct"], label="Split", value="complete") | |
subset = gr.Dropdown(choices=["hard", "full"], label="Subset", value="hard") | |
with gr.Row(): | |
parallel = gr.Number(label="Parallel (optional)", precision=0) | |
min_time_limit = gr.Number(label="Min Time Limit", value=1, precision=1) | |
max_as_limit = gr.Number(label="Max AS Limit", value=25*1024, precision=0) | |
with gr.Row(): | |
max_data_limit = gr.Number(label="Max Data Limit", value=25*1024, precision=0) | |
max_stack_limit = gr.Number(label="Max Stack Limit", value=10, precision=0) | |
check_gt_only = gr.Checkbox(label="Check GT Only") | |
no_gt = gr.Checkbox(label="No GT") | |
command_output = gr.Textbox(label="Command", value=default_command, interactive=False) | |
with gr.Row(): | |
submit_btn = gr.Button("Run Evaluation") | |
download_btn = gr.DownloadButton(label="Download Result") | |
log_output = gr.Textbox(label="Execution Logs", lines=20) | |
input_components = [ | |
jsonl_file, split, subset, parallel, | |
min_time_limit, max_as_limit, max_data_limit, max_stack_limit, | |
check_gt_only, no_gt | |
] | |
for component in input_components: | |
component.change(generate_command, inputs=input_components, outputs=command_output) | |
def start_evaluation(command, jsonl_file, subset, split): | |
extra = subset + "_" if subset != "full" else "" | |
if jsonl_file is not None: | |
result_path = os.path.basename(jsonl_file.name).replace(".jsonl", f"_{extra}eval_results.json") | |
else: | |
result_path = None | |
for log in stream_logs(command, jsonl_file): | |
if jsonl_file is not None: | |
yield log, gr.update(value=result_path, label=result_path), gr.update() | |
else: | |
yield log, gr.update(), gr.update() | |
result_file = find_result_file() | |
if result_file: | |
return gr.update(label="Evaluation completed. Result file found."), gr.update(value=result_file) | |
# gr.Button(visible=False)#, | |
# gr.DownloadButton(label="Download Result", value=result_file, visible=True)) | |
else: | |
return gr.update(label="Evaluation completed. No result file found."), gr.update(value=result_path) | |
# gr.Button("Run Evaluation", visible=True), | |
# gr.DownloadButton(visible=False)) | |
submit_btn.click(start_evaluation, | |
inputs=[command_output, jsonl_file, subset, split], | |
outputs=[log_output, download_btn]) | |
REPO_ID = "bigcode/bigcodebench-evaluator" | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
API = HfApi(token=HF_TOKEN) | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID, token=HF_TOKEN) | |
demo.queue(max_size=300).launch(share=True, server_name="0.0.0.0", server_port=7860) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", hours=3) # restarted every 3h as backup in case automatic updates are not working | |
scheduler.start() |