from dataclasses import dataclass, make_dataclass from enum import Enum import json import logging from datetime import datetime import pandas as pd # Configure logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") # Convert ISO 8601 dates to datetime objects for comparison def parse_iso8601_datetime(date_str): if date_str.endswith('Z'): date_str = date_str[:-1] + '+00:00' return datetime.fromisoformat(date_str) def parse_datetime(datetime_str): formats = [ "%Y-%m-%dT%H-%M-%S.%f", # Format with dashes "%Y-%m-%dT%H:%M:%S.%f", # Standard format with colons "%Y-%m-%dT%H %M %S.%f", # Spaces as separator ] for fmt in formats: try: return datetime.strptime(datetime_str, fmt) except ValueError: continue # in rare cases set unix start time for files with incorrect time (legacy files) logging.error(f"No valid date format found for: {datetime_str}") return datetime(1970, 1, 1) def load_json_data(file_path): """Safely load JSON data from a file.""" try: with open(file_path, "r") as file: return json.load(file) except json.JSONDecodeError: print(f"Error reading JSON from {file_path}") return None # Or raise an exception def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] column_map = { "T": "T", "model": "Model", "type": "Model Type", "size_range": "Size Range", "complete": "Complete", "instruct": "Instruct", "average": "Average", "elo_mle": "Elo Rating", "link": "Link", "act_param": "#Act Params (B)", "size": "#Params (B)", "moe": "MoE", "lazy": "Lazy", "openness": "Openness", # "direct_complete": "Direct Completion", } type_map = { "🔶": "🔶 Chat Models (RLHF, DPO, IFT, ...)", "🟢": "🟢 Base Models" } moe_map = { True: "MoE", False: "Dense" } # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass(frozen=True) class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False dummy: bool = False auto_eval_column_dict = [] # Init auto_eval_column_dict.append(["T", ColumnContent, ColumnContent(column_map["T"], "str", True, never_hidden=True)]) auto_eval_column_dict.append(["model", ColumnContent, ColumnContent(column_map["model"], "markdown", True, never_hidden=True)]) auto_eval_column_dict.append(["type", ColumnContent, ColumnContent(column_map["type"], "str", False, True)]) auto_eval_column_dict.append(["size_range", ColumnContent, ColumnContent(column_map["size_range"], "str", False, True)]) # Scores auto_eval_column_dict.append(["complete", ColumnContent, ColumnContent(column_map["complete"], "number", True)]) auto_eval_column_dict.append(["instruct", ColumnContent, ColumnContent(column_map["instruct"], "number", True)]) auto_eval_column_dict.append(["average", ColumnContent, ColumnContent(column_map["average"], "number", True)]) auto_eval_column_dict.append(["elo_mle", ColumnContent, ColumnContent(column_map["elo_mle"], "number", True)]) # Model information auto_eval_column_dict.append(["act_param", ColumnContent, ColumnContent(column_map["act_param"], "number", True)]) auto_eval_column_dict.append(["link", ColumnContent, ColumnContent(column_map["link"], "str", False, True)]) auto_eval_column_dict.append(["size", ColumnContent, ColumnContent(column_map["size"], "number", False)]) auto_eval_column_dict.append(["lazy", ColumnContent, ColumnContent(column_map["lazy"], "bool", False, True)]) auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent(column_map["moe"], "str", False, True)]) auto_eval_column_dict.append(["openness", ColumnContent, ColumnContent(column_map["openness"], "str", False, True)]) # auto_eval_column_dict.append(["direct_complete", ColumnContent, ColumnContent(column_map["direct_complete"], "bool", False)]) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) @dataclass(frozen=True) class EvalQueueColumn: # Queue column model_link = ColumnContent("link", "markdown", True) model_name = ColumnContent("model", "str", True) @dataclass class ModelDetails: name: str symbol: str = "" # emoji, only for the model type # Column selection COLS = [c.name for c in fields(AutoEvalColumn)] TYPES = [c.type for c in fields(AutoEvalColumn)] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] NUMERIC_INTERVALS = { "?": pd.Interval(-1, 0, closed="right"), "~1.5": pd.Interval(0, 2, closed="right"), "~3": pd.Interval(2, 4, closed="right"), "~7": pd.Interval(4, 9, closed="right"), "~13": pd.Interval(9, 20, closed="right"), "~35": pd.Interval(20, 45, closed="right"), "~60": pd.Interval(45, 70, closed="right"), "70+": pd.Interval(70, 10000, closed="right"), }