File size: 13,083 Bytes
8221951
 
 
 
7209bc9
6c25d13
 
7209bc9
 
fa9f1ec
 
 
 
 
 
8221951
 
 
 
7209bc9
 
 
920a2a0
7209bc9
2e2eeaa
17fa222
7209bc9
2e2eeaa
7209bc9
 
 
920a2a0
7209bc9
2e2eeaa
7209bc9
 
2e2eeaa
fa9f1ec
8221951
 
 
 
 
 
 
 
 
 
 
fa9f1ec
 
 
8221951
 
 
 
6c25d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8221951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c25d13
 
8221951
 
 
6c25d13
8221951
6c25d13
8221951
 
 
6c25d13
da246ad
6c25d13
da246ad
 
 
 
 
6c25d13
da246ad
 
6c25d13
 
31a66c1
6c25d13
 
31a66c1
 
 
 
 
 
 
 
 
 
 
 
6c25d13
da246ad
8221951
 
6c25d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da246ad
 
6c25d13
da246ad
 
 
 
 
 
6c25d13
8221951
6c25d13
da246ad
 
6c25d13
 
 
 
 
 
8221951
6c25d13
 
 
 
 
 
 
 
da246ad
 
 
 
8221951
da246ad
 
 
 
 
8221951
 
da246ad
 
fa9f1ec
da246ad
 
 
 
 
 
 
fa9f1ec
 
6c25d13
 
 
 
 
 
fa9f1ec
6c25d13
fa9f1ec
 
 
 
 
6c25d13
 
 
 
 
fa9f1ec
 
 
 
 
 
 
 
6c25d13
 
da246ad
fa9f1ec
 
8221951
 
fa9f1ec
 
 
 
 
 
8221951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9f1ec
 
 
da246ad
fa9f1ec
 
8221951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b606e4
8221951
 
 
 
 
da246ad
fa9f1ec
 
 
 
da246ad
fa9f1ec
 
da246ad
 
 
e7386b4
2cc82f7
da246ad
 
 
8221951
 
 
 
 
 
 
 
 
 
 
 
da246ad
 
d6e116f
 
 
da246ad
 
d6e116f
da246ad
d6e116f
da246ad
2cc82f7
d6e116f
2eb2fa2
da246ad
 
 
fa9f1ec
 
da246ad
 
fa9f1ec
 
 
da246ad
 
fa9f1ec
8221951
da246ad
394e502
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import json
import os
import gradio as gr
import requests
from huggingface_hub import HfApi
import traceback


hf_api = HfApi()
roots_datasets = {
    dset.id.split("/")[-1]: dset
    for dset in hf_api.list_datasets(
        author="bigscience-data", use_auth_token=os.environ.get("bigscience_data_token")
    )
}


def get_docid_html(docid):
    data_org, dataset, docid = docid.split("/")
    metadata = roots_datasets[dataset]
    if metadata.private:
        docid_html = (
            f"<a "
            f'class="underline-on-hover"'
            f'title="This dataset is private. See the introductory text for more information"'
            f'style="color:#AA4A44;"'
            f'href="https://huggingface.co/datasets/bigscience-data/{dataset}"'
            f'target="_blank"><b>πŸ”’{dataset}</b></a><span style="color: #7978FF;">/{docid}</span>'
        )
    else:
        docid_html = (
            f"<a "
            f'class="underline-on-hover"'
            f'title="This dataset is licensed {metadata.tags[0].split(":")[-1]}"'
            f'style="color:#2D31FA;"'
            f'href="https://huggingface.co/datasets/bigscience-data/{dataset}"'
            f'target="_blank"><b>{dataset}</b></a><span style="color: #7978FF;">/{docid}</span>'
        )
    return docid_html


PII_TAGS = {"KEY", "EMAIL", "USER", "IP_ADDRESS", "ID", "IPv4", "IPv6"}
PII_PREFIX = "PI:"


def process_pii(text):
    for tag in PII_TAGS:
        text = text.replace(
            PII_PREFIX + tag,
            """<b><mark style="background: Fuchsia; color: Lime;">REDACTED {}</mark></b>""".format(
                tag
            ),
        )
    return text


def format_meta(result):
    meta_html = (
        """
              <p class='underline-on-hover' style='font-size:12px; font-family: Arial; color:#585858; text-align: left;'>
              <a href='{}' target='_blank'>{}</a></p>""".format(
            result["meta"]["url"], result["meta"]["url"]
        )
        if "meta" in result and result["meta"] is not None and "url" in result["meta"]
        else ""
    )
    docid_html = get_docid_html(result["docid"])
    return """{}
          <p style='font-size:14px; font-family: Arial; color:#7978FF; text-align: left;'>Document ID: {}</p>
          <p style='font-size:12px; font-family: Arial; color:MediumAquaMarine'>Language: {}</p>
      """.format(
        meta_html,
        docid_html,
        result["lang"] if lang in result else None,
    )
    return meta_html


def process_results(results, highlight_terms):
    if len(results) == 0:
        return """<br><p style='font-family: Arial; color:Silver; text-align: center;'>
                No results retrieved.</p><br><hr>"""
    results_html = ""
    for result in results:
        tokens = result["text"].split()
        tokens_html = []
        for token in tokens:
            if token in highlight_terms:
                tokens_html.append("<b>{}</b>".format(token))
            else:
                tokens_html.append(token)
        tokens_html = " ".join(tokens_html)
        tokens_html = process_pii(tokens_html)
        meta_html = format_meta(result)
        meta_html += """
            <p style='font-family: Arial;'>{}</p>
            <br>
        """.format(
            tokens_html
        )
        results_html += meta_html
    return results_html + "<hr>"


def process_exact_match_payload(payload, query):
    datasets = set()
    results = payload["results"]
    results_html = (
        "<p style='font-family: Arial;'>Total nubmer of results: {}</p>".format(
            payload["num_results"]
        )
    )
    for result in results:
        _, dataset, _ = result["docid"].split("/")
        datasets.add(dataset)
        text = result["text"]
        meta_html = format_meta(result)

        query_start = text.find(query)
        query_end = query_start + len(query)
        tokens_html = text[0:query_start]
        tokens_html += "<b>{}</b>".format(text[query_start:query_end])
        tokens_html += text[query_end:]
        result_html = (
            meta_html
            + """
            <p style='font-family: Arial;'>{}</p>
            <br>
        """.format(
                tokens_html
            )
        )
        results_html += result_html
    return results_html + "<hr>", list(datasets)


def process_bm25_match_payload(payload, language):
    if "err" in payload:
        if payload["err"]["type"] == "unsupported_lang":
            detected_lang = payload["err"]["meta"]["detected_lang"]
            return f"""
                <p style='font-size:18px; font-family: Arial; color:MediumVioletRed; text-align: center;'>
                Detected language <b>{detected_lang}</b> is not supported.<br>
                Please choose a language from the dropdown or type another query.
                </p><br><hr><br>"""

    results = payload["results"]
    highlight_terms = payload["highlight_terms"]

    if language == "detect_language":
        return (
            (
                (
                    f"""<p style='font-family: Arial; color:MediumAquaMarine; text-align: center; line-height: 3em'>
            Detected language: <b>{results[0]["lang"]}</b></p><br><hr><br>"""
                    if len(results) > 0 and language == "detect_language"
                    else ""
                )
                + process_results(results, highlight_terms)
            ),
            [],
        )

    if language == "all":
        datasets = set()
        get_docid_html(result["docid"])
        results_html = ""
        for lang, results_for_lang in results.items():
            if len(results_for_lang) == 0:
                results_html += f"""<p style='font-family: Arial; color:Silver; text-align: left; line-height: 3em'>
                        No results for language: <b>{lang}</b><hr></p>"""
                continue

            collapsible_results = f"""
                <details>
                    <summary style='font-family: Arial; color:MediumAquaMarine; text-align: left; line-height: 3em'>
                        Results for language: <b>{lang}</b><hr>
                    </summary>
                    {process_results(results_for_lang, highlight_terms)}
                </details>"""
            results_html += collapsible_results
            for r in results_for_lang:
                _, dataset, _ = r["docid"].split("/")
                datasets.add(dataset)
        return results_html, list(datasets)

    datasets = set()
    for r in results:
        _, dataset, _ = r["docid"].split("/")
        datasets.add(dataset)
    return process_results(results, highlight_terms), list(datasets)


def scisearch(query, language, num_results=10):
    datasets = []
    try:
        query = query.strip()
        exact_search = False
        if query.startswith('"') and query.endswith('"') and len(query) >= 2:
            exact_search = True
            query = query[1:-1]
        else:
            query = " ".join(query.split())
        if query == "" or query is None:
            return ""
        post_data = {"query": query, "k": num_results}
        if language != "detect_language":
            post_data["lang"] = language
        address = (
            "http://34.105.160.81:8080" if exact_search else os.environ.get("address")
        )
        output = requests.post(
            address,
            headers={"Content-type": "application/json"},
            data=json.dumps(post_data),
            timeout=60,
        )
        payload = json.loads(output.text)
        return (
            process_bm25_match_payload(payload, language)
            if not exact_search
            else process_exact_match_payload(payload, query)
        )
    except Exception as e:
        results_html = f"""
                <p style='font-size:18px; font-family: Arial; color:MediumVioletRed; text-align: center;'>
                Raised {type(e).__name__}</p>
                <p style='font-size:14px; font-family: Arial; '>
                Check if a relevant discussion already exists in the Community tab. If not, please open a discussion.
                </p>
            """
        print(e)
        print(traceback.format_exc())
    return results_html, datasets


def flag(query, language, num_results, issue_description):
    try:
        post_data = {
            "query": query,
            "k": num_results,
            "flag": True,
            "description": issue_description,
        }
        if language != "detect_language":
            post_data["lang"] = language

        output = requests.post(
            os.environ.get("address"),
            headers={"Content-type": "application/json"},
            data=json.dumps(post_data),
            timeout=120,
        )

        results = json.loads(output.text)
    except:
        print("Error flagging")
    return ""


description = """# <p style="text-align: center;"> 🌸 πŸ”Ž ROOTS search tool πŸ” 🌸 </p>
The ROOTS corpus was developed during the [BigScience workshop](https://bigscience.huggingface.co/) for the purpose
of training the Multilingual Large Language Model [BLOOM](https://huggingface.co/bigscience/bloom). This tool allows
you to search through the ROOTS corpus. We serve a BM25 index for each language or group of languages included in
ROOTS. You can read more about the details of the tool design
[here](https://huggingface.co/spaces/bigscience-data/scisearch/blob/main/roots_search_tool_specs.pdf). For more
information and instructions on how to access the full corpus check [this form](https://forms.gle/qyYswbEL5kA23Wu99)."""


if __name__ == "__main__":
    demo = gr.Blocks(
        css=".underline-on-hover:hover { text-decoration: underline; } .flagging { font-size:12px; color:Silver; }"
    )

    with demo:
        with gr.Row():
            gr.Markdown(value=description)
        with gr.Row():
            query = gr.Textbox(
                lines=1,
                max_lines=1,
                placeholder="Put your query in double quotes for exact search.",
                label="Query",
            )
        with gr.Row():
            lang = gr.Dropdown(
                choices=[
                    "ar",
                    "ca",
                    "code",
                    "en",
                    "es",
                    "eu",
                    "fr",
                    "id",
                    "indic",
                    "nigercongo",
                    "pt",
                    "vi",
                    "zh",
                    "detect_language",
                    "all",
                ],
                value="en",
                label="Language",
            )
        with gr.Row():
            k = gr.Slider(1, 100, value=10, step=1, label="Max Results")
        with gr.Row():
            """
            with gr.Column(scale=1):
                exact_search = gr.Checkbox(
                    value=False, label="Exact Search", variant="compact"
                )
            """
            with gr.Column(scale=4):
                submit_btn = gr.Button("Submit")
        with gr.Row(visible=False) as datasets_filter:
            available_datasets = gr.Dropdown(
                type="value",
                choices=[],
                value=[],
                label="Datasets",
                multiselect=True,
            )
        with gr.Row():
            results = gr.HTML(label="Results")
        with gr.Column(visible=False) as flagging_form:
            flag_txt = gr.Textbox(
                lines=1,
                placeholder="Type here...",
                label="""If you choose to flag your search, we will save the query, language and the number of results
                    you requested. Please consider adding relevant additional context below:""",
            )
            flag_btn = gr.Button("Flag Results")
            flag_btn.click(flag, inputs=[query, lang, k, flag_txt], outputs=[flag_txt])

        def submit(query, lang, k, dropdown_input):
            print("submitting", query, lang, k)
            query = query.strip()
            if query is None or query == "":
                return "", ""
            results_html, datasets = scisearch(query, lang, k)
            print(datasets)
            return {
                results: results_html,
                flagging_form: gr.update(visible=True),
                datasets_filter: gr.update(visible=True),
                available_datasets: gr.Dropdown.update(choices=datasets, value=datasets),
            }

        def filter_datasets():
            pass

        query.submit(
            fn=submit,
            inputs=[query, lang, k, available_datasets],
            outputs=[results, flagging_form, datasets_filter, available_datasets],
        )
        submit_btn.click(
            submit,
            inputs=[query, lang, k, available_datasets],
            outputs=[results, flagging_form, datasets_filter, available_datasets],
        )

        available_datasets.change(filter_datasets, inputs=[], outputs=[])
    demo.launch(enable_queue=True, debug=True)