Spaces:
Runtime error
Runtime error
bikrammaharjan
commited on
Commit
•
7b79cf7
1
Parent(s):
f19cfab
TSLA stock sentiment
Browse files- TSLA_streamlit_app.py +0 -203
- requirements.txt +9 -0
TSLA_streamlit_app.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
from datetime import date
|
2 |
-
from datetime import datetime
|
3 |
-
import re
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
from PIL import Image
|
8 |
-
import plotly.express as px
|
9 |
-
import plotly.graph_objects as go
|
10 |
-
import streamlit as st
|
11 |
-
import time
|
12 |
-
|
13 |
-
from plotly.subplots import make_subplots
|
14 |
-
|
15 |
-
# Read CSV file into pandas and extract timestamp data
|
16 |
-
# dfSentiment = ### YOUR LINE OF CODE HERE
|
17 |
-
dfSentiment = pd.read_csv('../Phase_I-Proof_of_concept/TSLASentimentAnalyzer/sentiment_data.csv')
|
18 |
-
dfSentiment['timestamp'] = [datetime.strptime(dt, '%Y-%m-%d') for dt in dfSentiment['timestamp'].tolist()]
|
19 |
-
|
20 |
-
# Multi-select columns to build chart
|
21 |
-
col_list = dfSentiment.columns.tolist()
|
22 |
-
|
23 |
-
|
24 |
-
r_sentiment = re.compile(".*sentiment")
|
25 |
-
sentiment_cols = list(filter(r_sentiment.match, col_list))
|
26 |
-
|
27 |
-
r_post = re.compile(".*post")
|
28 |
-
post_list = ist(filter(r_post.match, col_list))
|
29 |
-
|
30 |
-
|
31 |
-
r_perc= re.compile(".*perc")
|
32 |
-
perc_list = list(filter(r_perc.match, col_list))
|
33 |
-
|
34 |
-
r_close = re.compile(".*close")
|
35 |
-
close_list = list(filter(r_close.match, col_list))
|
36 |
-
|
37 |
-
r_volume = re.compile(".*volume")
|
38 |
-
volume_list = list(filter(r_volume.match, col_list))
|
39 |
-
|
40 |
-
sentiment_cols = sentiment_cols + post_list
|
41 |
-
stocks_cols = close_list + volume_list
|
42 |
-
|
43 |
-
# Config for page
|
44 |
-
st.set_page_config(
|
45 |
-
page_title= 'TSLA Bot',
|
46 |
-
page_icon='✅',
|
47 |
-
layout='wide',
|
48 |
-
)
|
49 |
-
|
50 |
-
with st.sidebar:
|
51 |
-
# FourthBrain logo to sidebar
|
52 |
-
fourthbrain_logo = Image.open('./images/fourthbrain_logo.png')
|
53 |
-
st.image([fourthbrain_logo], width=300)
|
54 |
-
|
55 |
-
# Date selection filters
|
56 |
-
start_date_filter = st.date_input(
|
57 |
-
'Start Date',
|
58 |
-
min(dfSentiment['timestamp']),
|
59 |
-
min_value=min(dfSentiment['timestamp']),
|
60 |
-
max_value=max(dfSentiment['timestamp'])
|
61 |
-
)
|
62 |
-
|
63 |
-
|
64 |
-
end_date_filter = st.date_input(
|
65 |
-
'End Date',
|
66 |
-
max(dfSentiment['timestamp']),
|
67 |
-
min_value=min(dfSentiment['timestamp']),
|
68 |
-
max_value=max(dfSentiment['timestamp'])
|
69 |
-
)
|
70 |
-
|
71 |
-
sentiment_select = st.selectbox('Select Sentiment/Reddit Data', sentiment_cols)
|
72 |
-
stock_select = st.selectbox('Select Stock Data', stocks_cols)
|
73 |
-
|
74 |
-
# Banner with TSLA and Reddit images
|
75 |
-
tsla_logo = Image.open('./images/tsla_logo.png')
|
76 |
-
reddit_logo = Image.open('./images/reddit_logo.png')
|
77 |
-
st.image([tsla_logo, reddit_logo], width=200)
|
78 |
-
|
79 |
-
# dashboard title
|
80 |
-
st.title('TSLA Subreddit and Stock Price')
|
81 |
-
|
82 |
-
## dataframe filter
|
83 |
-
# start date
|
84 |
-
dfSentiment = dfSentiment[dfSentiment['timestamp'] >= datetime(start_date_filter.year, start_date_filter.month, start_date_filter.day)]
|
85 |
-
|
86 |
-
# end date
|
87 |
-
dfSentiment = dfSentiment[dfSentiment['timestamp'] <= datetime(end_date_filter.year, end_date_filter.month, end_date_filter.day)]
|
88 |
-
dfSentiment = dfSentiment.reset_index(drop=True)
|
89 |
-
|
90 |
-
|
91 |
-
# creating a single-element container
|
92 |
-
placeholder = st.empty()
|
93 |
-
|
94 |
-
# near real-time / live feed simulation
|
95 |
-
for i in range(1, len(dfSentiment)-1):
|
96 |
-
|
97 |
-
# creating KPIs
|
98 |
-
last_close = dfSentiment['close'][i]
|
99 |
-
last_close_lag1 = dfSentiment['close'][i-1]
|
100 |
-
last_sentiment = dfSentiment['sentiment_score'][i]
|
101 |
-
last_sentiment_lag1 = dfSentiment['sentiment_score'][i-1]
|
102 |
-
|
103 |
-
|
104 |
-
with placeholder.container():
|
105 |
-
|
106 |
-
# create columns
|
107 |
-
kpi1, kpi2 = st.columns(3)
|
108 |
-
|
109 |
-
# fill in those three columns with respective metrics or KPIs
|
110 |
-
kpi1.metric(
|
111 |
-
label='Sentiment Score',
|
112 |
-
value=round(last_sentiment, 3),
|
113 |
-
delta=round(last_sentiment_lag1, 3),
|
114 |
-
)
|
115 |
-
|
116 |
-
kpi2.metric(
|
117 |
-
label='Last Closing Price',
|
118 |
-
value=round(last_close),
|
119 |
-
delta=round(last_close - last_close_lag1)
|
120 |
-
)
|
121 |
-
|
122 |
-
|
123 |
-
# create two columns for charts
|
124 |
-
fig_col1, fig_col2 = st.columns(2)
|
125 |
-
|
126 |
-
with fig_col1:
|
127 |
-
# Add traces
|
128 |
-
fig=make_subplots(specs=[[{"secondary_y":True}]])
|
129 |
-
|
130 |
-
|
131 |
-
fig.add_trace(
|
132 |
-
go.Scatter(
|
133 |
-
x=dfSentiment['timestamp'][0:i],
|
134 |
-
y=dfSentiment[sentiment_select][0:i],
|
135 |
-
name=sentiment_select,
|
136 |
-
mode='lines',
|
137 |
-
hoverinfo='none',
|
138 |
-
)
|
139 |
-
)
|
140 |
-
|
141 |
-
if sentiment_select.startswith('perc') == True:
|
142 |
-
yaxis_label = '% Change Sentiment'
|
143 |
-
|
144 |
-
elif sentiment_select in sentiment_cols:
|
145 |
-
yaxis_label = 'Sentiment Score'
|
146 |
-
|
147 |
-
elif sentiment_select in post_list:
|
148 |
-
yaxis_label = 'Volume'
|
149 |
-
|
150 |
-
fig.layout.yaxis.title=yaxis_label
|
151 |
-
|
152 |
-
if stock_select.startswith('perc') == True:
|
153 |
-
fig.add_trace(
|
154 |
-
go.Scatter(
|
155 |
-
x=dfSentiment['timestamp'][0:i],
|
156 |
-
y=dfSentiment[stock_select][0:i],
|
157 |
-
name=stock_select,
|
158 |
-
mode='lines',
|
159 |
-
hoverinfo='none',
|
160 |
-
yaxis='y2',
|
161 |
-
)
|
162 |
-
)
|
163 |
-
fig.layout.yaxis2.title='% Change Stock Price ($US)'
|
164 |
-
|
165 |
-
elif stock_select == 'volume':
|
166 |
-
fig.add_trace(
|
167 |
-
go.Scatter(
|
168 |
-
x=dfSentiment['timestamp'][0:i],
|
169 |
-
y=dfSentiment[stock_select][0:i],
|
170 |
-
name=stock_select,
|
171 |
-
mode='lines',
|
172 |
-
hoverinfo='none',
|
173 |
-
yaxis='y2',
|
174 |
-
)
|
175 |
-
)
|
176 |
-
|
177 |
-
fig.layout.yaxis2.title="Shares Traded"
|
178 |
-
|
179 |
-
|
180 |
-
else:
|
181 |
-
fig.add_trace(
|
182 |
-
go.Scatter(
|
183 |
-
x=dfSentiment['timestamp'][0:i],
|
184 |
-
y=dfSentiment[stock_select][0:i],
|
185 |
-
name=stock_select,
|
186 |
-
mode='lines',
|
187 |
-
hoverinfo='none',
|
188 |
-
yaxis='y2',
|
189 |
-
)
|
190 |
-
)
|
191 |
-
|
192 |
-
fig.layout.yaxis2.title='Stock Price ($USD)'
|
193 |
-
|
194 |
-
|
195 |
-
fig.layout.xaxis.title='Timestamp'
|
196 |
-
|
197 |
-
# write the figure throught streamlit
|
198 |
-
st.write(fig)
|
199 |
-
|
200 |
-
|
201 |
-
st.markdown('### Detailed Data View')
|
202 |
-
st.dataframe(dfSentiment.iloc[:, 1:][0:i])
|
203 |
-
time.sleep(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==1.4.2
|
2 |
+
matplotlib==3.5.2
|
3 |
+
streamlit==1.10.0
|
4 |
+
transformers==4.19.4
|
5 |
+
pydantic==1.9.1
|
6 |
+
praw==7.6.0
|
7 |
+
pytorch-pretrained-bert==0.6.2
|
8 |
+
loguru==0.6.0
|
9 |
+
plotly==5.9.0
|