Spaces:
Runtime error
Runtime error
File size: 15,901 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
#!/usr/bin/env python
# pylint: disable=no-member
import os
import re
import json
import time
import logging
import importlib
import asyncio
import argparse
from pathlib import Path
from util import Map, log
from sdapi import get, post, close
from generate import generate # pylint: disable=import-error
grid = importlib.import_module('image-grid').grid
options = Map({
# used by extra networks
'prompt': 'photo of <keyword> <embedding>, photograph, posing, pose, high detailed, intricate, elegant, sharp focus, skin texture, looking forward, facing camera, 135mm, shot on dslr, canon 5d, 4k, modelshoot style, cinematic lighting',
# used by models
'prompts': [
('photo citiscape', 'cityscape during night, photorealistic, high detailed, sharp focus, depth of field, 4k'),
('photo car', 'photo of a sports car, high detailed, sharp focus, dslr, cinematic lighting, realistic'),
('photo woman', 'portrait photo of beautiful woman, high detailed, dslr, 35mm'),
('photo naked', 'full body photo of beautiful sexy naked woman, high detailed, dslr, 35mm'),
('photo taylor', 'portrait photo of beautiful woman taylor swift, high detailed, sharp focus, depth of field, dslr, 35mm <lora:taylor-swift:1>'),
('photo ti-mia', 'portrait photo of beautiful woman "ti-mia", naked, high detailed, dslr, 35mm'),
('photo ti-vlado', 'portrait photo of man "ti-vlado", high detailed, dslr, 35mm'),
('photo lora-vlado', 'portrait photo of man vlado, high detailed, dslr, 35mm <lora:vlado-original:1>'),
('wlop', 'a stunning portrait of sexy teen girl in a wet t-shirt, vivid color palette, digital painting, octane render, highly detailed, particles, light effect, volumetric lighting, art by wlop'),
('greg rutkowski', 'beautiful woman, high detailed, sharp focus, depth of field, 4k, art by greg rutkowski'),
('carne griffiths', 'beautiful woman taylor swift, high detailed, sharp focus, depth of field, art by carne griffiths <lora:taylor-swift:1>'),
('carne griffiths', 'man vlado, high detailed, sharp focus, depth of field, art by carne griffiths <lora:vlado-full:1>'),
],
# save format
'format': '.jpg',
# used by generate script
'paths': {
"root": "/mnt/c/Users/mandi/OneDrive/Generative/Generate",
"generate": "image",
"upscale": "upscale",
"grid": "grid",
},
# generate params
'generate': {
'restore_faces': True,
'prompt': '',
'negative_prompt': 'foggy, blurry, blurred, duplicate, ugly, mutilated, mutation, mutated, out of frame, bad anatomy, disfigured, deformed, censored, low res, low resolution, watermark, text, poorly drawn face, poorly drawn hands, signature',
'steps': 20,
'batch_size': 2,
'n_iter': 1,
'seed': -1,
'sampler_name': 'UniPC',
'cfg_scale': 6,
'width': 512,
'height': 512,
},
'lora': {
'strength': 1.0,
},
'hypernetwork': {
'keyword': '',
'strength': 1.0,
},
})
def preview_exists(folder, model):
model = os.path.splitext(model)[0]
for suffix in ['', '.preview']:
for ext in ['.jpg', '.png', '.webp']:
fn = os.path.join(folder, f'{model}{suffix}{ext}')
if os.path.exists(fn):
return True
return False
async def preview_models(params):
data = await get('/sdapi/v1/sd-models')
allmodels = [m['title'] for m in data]
models = []
excluded = []
for m in allmodels: # loop through all registered models
ok = True
for e in params.exclude: # check if model is excluded
if e in m:
excluded.append(m)
ok = False
break
if ok:
short = m.split(' [')[0]
short = short.replace('.ckpt', '').replace('.safetensors', '')
models.append(short)
if len(params.input) > 0: # check if model is included in cmd line
filtered = []
for m in params.input:
if m in models:
filtered.append(m)
else:
log.error({ 'model not found': m })
return
models = filtered
log.info({ 'models preview' })
log.info({ 'models': len(models), 'excluded': len(excluded) })
opt = await get('/sdapi/v1/options')
log.info({ 'total jobs': len(models) * options.generate.batch_size, 'per-model': options.generate.batch_size })
log.info(json.dumps(options, indent=2))
for model in models:
if preview_exists(opt['ckpt_dir'], model) and len(params.input) == 0: # if model preview exists and not manually included
log.info({ 'model preview exists': model })
continue
fn = os.path.join(opt['ckpt_dir'], os.path.splitext(model)[0] + options.format)
log.info({ 'model load': model })
opt['sd_model_checkpoint'] = model
del opt['sd_lora']
del opt['sd_lyco']
await post('/sdapi/v1/options', opt)
opt = await get('/sdapi/v1/options')
images = []
labels = []
t0 = time.time()
for label, p in options.prompts:
options.generate.prompt = p
log.info({ 'model generating': model, 'label': label, 'prompt': options.generate.prompt })
data = await generate(options = options, quiet=True)
if 'image' in data:
for img in data['image']:
images.append(img)
labels.append(label)
else:
log.error({ 'model': model, 'error': data })
t1 = time.time()
if len(images) == 0:
log.error({ 'model': model, 'error': 'no images generated' })
continue
image = grid(images = images, labels = labels, border = 8)
log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] })
image.save(fn)
t = t1 - t0
its = 1.0 * options.generate.steps * len(images) / t
log.info({ 'model preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) })
opt = await get('/sdapi/v1/options')
if opt['sd_model_checkpoint'] != params.model:
log.info({ 'model set default': params.model })
opt['sd_model_checkpoint'] = params.model
del opt['sd_lora']
del opt['sd_lyco']
await post('/sdapi/v1/options', opt)
async def lora(params):
opt = await get('/sdapi/v1/options')
folder = opt['lora_dir']
if not os.path.exists(folder):
log.error({ 'lora directory not found': folder })
return
models1 = list(Path(folder).glob('**/*.safetensors'))
models2 = list(Path(folder).glob('**/*.ckpt'))
models = [os.path.splitext(f)[0] for f in models1 + models2]
log.info({ 'loras': len(models) })
for model in models:
if preview_exists('', model) and len(params.input) == 0: # if model preview exists and not manually included
log.info({ 'lora preview exists': model })
continue
fn = model + options.format
model = os.path.basename(model)
images = []
labels = []
t0 = time.time()
keywords = re.sub(r'\d', '', model)
keywords = keywords.replace('-v', ' ').replace('-', ' ').strip().split(' ')
keyword = '\"' + '\" \"'.join(keywords) + '\"'
options.generate.prompt = options.prompt.replace('<keyword>', keyword)
options.generate.prompt = options.generate.prompt.replace('<embedding>', '')
options.generate.prompt += f' <lora:{model}:{options.lora.strength}>'
log.info({ 'lora generating': model, 'keyword': keyword, 'prompt': options.generate.prompt })
data = await generate(options = options, quiet=True)
if 'image' in data:
for img in data['image']:
images.append(img)
labels.append(keyword)
else:
log.error({ 'lora': model, 'keyword': keyword, 'error': data })
t1 = time.time()
if len(images) == 0:
log.error({ 'model': model, 'error': 'no images generated' })
continue
image = grid(images = images, labels = labels, border = 8)
log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] })
image.save(fn)
t = t1 - t0
its = 1.0 * options.generate.steps * len(images) / t
log.info({ 'lora preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) })
async def lyco(params):
opt = await get('/sdapi/v1/options')
folder = opt['lyco_dir']
if not os.path.exists(folder):
log.error({ 'lyco directory not found': folder })
return
models1 = list(Path(folder).glob('**/*.safetensors'))
models2 = list(Path(folder).glob('**/*.ckpt'))
models = [os.path.splitext(f)[0] for f in models1 + models2]
log.info({ 'lycos': len(models) })
for model in models:
if preview_exists('', model) and len(params.input) == 0: # if model preview exists and not manually included
log.info({ 'lyco preview exists': model })
continue
fn = model + options.format
model = os.path.basename(model)
images = []
labels = []
t0 = time.time()
keywords = re.sub(r'\d', '', model)
keywords = keywords.replace('-v', ' ').replace('-', ' ').strip().split(' ')
keyword = '\"' + '\" \"'.join(keywords) + '\"'
options.generate.prompt = options.prompt.replace('<keyword>', keyword)
options.generate.prompt = options.generate.prompt.replace('<embedding>', '')
options.generate.prompt += f' <lyco:{model}:{options.lora.strength}>'
log.info({ 'lyco generating': model, 'keyword': keyword, 'prompt': options.generate.prompt })
data = await generate(options = options, quiet=True)
if 'image' in data:
for img in data['image']:
images.append(img)
labels.append(keyword)
else:
log.error({ 'lyco': model, 'keyword': keyword, 'error': data })
t1 = time.time()
if len(images) == 0:
log.error({ 'model': model, 'error': 'no images generated' })
continue
image = grid(images = images, labels = labels, border = 8)
log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] })
image.save(fn)
t = t1 - t0
its = 1.0 * options.generate.steps * len(images) / t
log.info({ 'lyco preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) })
async def hypernetwork(params):
opt = await get('/sdapi/v1/options')
folder = opt['hypernetwork_dir']
if not os.path.exists(folder):
log.error({ 'hypernetwork directory not found': folder })
return
models = [os.path.splitext(f)[0] for f in Path(folder).glob('**/*.pt')]
log.info({ 'hypernetworks': len(models) })
for model in models:
if preview_exists(folder, model) and len(params.input) == 0: # if model preview exists and not manually included
log.info({ 'hypernetwork preview exists': model })
continue
fn = os.path.join(folder, model + options.format)
images = []
labels = []
t0 = time.time()
keyword = options.hypernetwork.keyword
options.generate.prompt = options.prompt.replace('<keyword>', options.hypernetwork.keyword)
options.generate.prompt = options.generate.prompt.replace('<embedding>', '')
options.generate.prompt = f' <hypernet:{model}:{options.hypernetwork.strength}> ' + options.generate.prompt
log.info({ 'hypernetwork generating': model, 'keyword': keyword, 'prompt': options.generate.prompt })
data = await generate(options = options, quiet=True)
if 'image' in data:
for img in data['image']:
images.append(img)
labels.append(keyword)
else:
log.error({ 'hypernetwork': model, 'keyword': keyword, 'error': data })
t1 = time.time()
if len(images) == 0:
log.error({ 'model': model, 'error': 'no images generated' })
continue
image = grid(images = images, labels = labels, border = 8)
log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] })
image.save(fn)
t = t1 - t0
its = 1.0 * options.generate.steps * len(images) / t
log.info({ 'hypernetwork preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) })
async def embedding(params):
opt = await get('/sdapi/v1/options')
folder = opt['embeddings_dir']
if not os.path.exists(folder):
log.error({ 'embeddings directory not found': folder })
return
models = [os.path.splitext(f)[0] for f in Path(folder).glob('**/*.pt')]
log.info({ 'embeddings': len(models) })
for model in models:
if preview_exists(folder, model) and len(params.input) == 0: # if model preview exists and not manually included
log.info({ 'embedding preview exists': model })
continue
fn = os.path.join(folder, model + '.preview' + options.format)
images = []
labels = []
t0 = time.time()
keyword = '\"' + re.sub(r'\d', '', model) + '\"'
options.generate.batch_size = 4
options.generate.prompt = options.prompt.replace('<keyword>', keyword)
options.generate.prompt = options.generate.prompt.replace('<embedding>', '')
log.info({ 'embedding generating': model, 'keyword': keyword, 'prompt': options.generate.prompt })
data = await generate(options = options, quiet=True)
if 'image' in data:
for img in data['image']:
images.append(img)
labels.append(keyword)
else:
log.error({ 'embeding': model, 'keyword': keyword, 'error': data })
t1 = time.time()
if len(images) == 0:
log.error({ 'model': model, 'error': 'no images generated' })
continue
image = grid(images = images, labels = labels, border = 8)
log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] })
image.save(fn)
t = t1 - t0
its = 1.0 * options.generate.steps * len(images) / t
log.info({ 'embeding preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) })
async def create_previews(params):
await preview_models(params)
await lora(params)
await lyco(params)
await hypernetwork(params)
await embedding(params)
await close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description = 'generate model previews')
parser.add_argument('--model', default='best/icbinp-icantbelieveIts-final.safetensors [73f48afbdc]', help="model used to create extra network previews")
parser.add_argument('--exclude', default=['sd-v20', 'sd-v21', 'inpainting', 'pix2pix'], help="exclude models with keywords")
parser.add_argument('--debug', default = False, action='store_true', help = 'print extra debug information')
parser.add_argument('input', type = str, nargs = '*')
args = parser.parse_args()
if args.debug:
log.setLevel(logging.DEBUG)
log.debug({ 'debug': True })
log.debug({ 'args': args.__dict__ })
asyncio.run(create_previews(args))
|