File size: 18,511 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import os
import inspect
from statistics import stdev, mean
from rich import progress
import torch
from torch import einsum
from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
from einops import rearrange, repeat
from ldm.util import default
from modules import devices, shared, hashes, errors, files_cache


class HypernetworkModule(torch.nn.Module):
    activation_dict = {
        "linear": torch.nn.Identity,
        "relu": torch.nn.ReLU,
        "leakyrelu": torch.nn.LeakyReLU,
        "elu": torch.nn.ELU,
        "swish": torch.nn.Hardswish,
        "tanh": torch.nn.Tanh,
        "sigmoid": torch.nn.Sigmoid,
    }
    activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})

    def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
                 add_layer_norm=False, activate_output=False, dropout_structure=None):
        super().__init__()
        self.multiplier = 1.0
        assert layer_structure is not None, "layer_structure must not be None"
        assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
        assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
        linears = []
        for i in range(len(layer_structure) - 1):
            # Add a fully-connected layer
            linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
            # Add an activation func except last layer
            if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
                pass
            elif activation_func in self.activation_dict:
                linears.append(self.activation_dict[activation_func]())
            else:
                raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
            # Add layer normalization
            if add_layer_norm:
                linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
            # Everything should be now parsed into dropout structure, and applied here.
            # Since we only have dropouts after layers, dropout structure should start with 0 and end with 0.
            if dropout_structure is not None and dropout_structure[i+1] > 0:
                assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!"
                linears.append(torch.nn.Dropout(p=dropout_structure[i+1]))
            # Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0].
        self.linear = torch.nn.Sequential(*linears)
        if state_dict is not None:
            self.fix_old_state_dict(state_dict)
            self.load_state_dict(state_dict)
        else:
            for layer in self.linear:
                if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
                    w, b = layer.weight.data, layer.bias.data
                    if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
                        normal_(w, mean=0.0, std=0.01)
                        normal_(b, mean=0.0, std=0)
                    elif weight_init == 'XavierUniform':
                        xavier_uniform_(w)
                        zeros_(b)
                    elif weight_init == 'XavierNormal':
                        xavier_normal_(w)
                        zeros_(b)
                    elif weight_init == 'KaimingUniform':
                        kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
                        zeros_(b)
                    elif weight_init == 'KaimingNormal':
                        kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
                        zeros_(b)
                    else:
                        raise KeyError(f"Key {weight_init} is not defined as initialization!")
        self.to(devices.device)

    def fix_old_state_dict(self, state_dict):
        changes = {
            'linear1.bias': 'linear.0.bias',
            'linear1.weight': 'linear.0.weight',
            'linear2.bias': 'linear.1.bias',
            'linear2.weight': 'linear.1.weight',
        }
        for fr, to in changes.items():
            x = state_dict.get(fr, None)
            if x is None:
                continue
            del state_dict[fr]
            state_dict[to] = x

    def forward(self, x):
        return x + self.linear(x) * (self.multiplier if not self.training else 1)

    def trainables(self):
        layer_structure = []
        for layer in self.linear:
            if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
                layer_structure += [layer.weight, layer.bias]
        return layer_structure


#param layer_structure : sequence used for length, use_dropout : controlling boolean, last_layer_dropout : for compatibility check.
def parse_dropout_structure(layer_structure, use_dropout, last_layer_dropout):
    if layer_structure is None:
        layer_structure = [1, 2, 1]
    if not use_dropout:
        return [0] * len(layer_structure)
    dropout_values = [0]
    dropout_values.extend([0.3] * (len(layer_structure) - 3))
    if last_layer_dropout:
        dropout_values.append(0.3)
    else:
        dropout_values.append(0)
    dropout_values.append(0)
    return dropout_values


class Hypernetwork:
    filename = None
    name = None

    def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
        self.filename = None
        self.name = name
        self.layers = {}
        self.step = 0
        self.sd_checkpoint = None
        self.sd_checkpoint_name = None
        self.layer_structure = layer_structure
        self.activation_func = activation_func
        self.weight_init = weight_init
        self.add_layer_norm = add_layer_norm
        self.use_dropout = use_dropout
        self.activate_output = activate_output
        self.last_layer_dropout = kwargs.get('last_layer_dropout', True)
        self.dropout_structure = kwargs.get('dropout_structure', None)
        if self.dropout_structure is None:
            self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
        self.optimizer_name = None
        self.optimizer_state_dict = None
        self.optional_info = None
        for size in enable_sizes or []:
            self.layers[size] = (
                HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
                                   self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
                HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
                                   self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
            )
        self.eval()

    def weights(self):
        res = []
        for layers in self.layers.values():
            for layer in layers:
                res += layer.parameters()
        return res

    def train(self, mode=True):
        for layers in self.layers.values():
            for layer in layers:
                layer.train(mode=mode)
                for param in layer.parameters():
                    param.requires_grad = mode

    def to(self, device):
        for layers in self.layers.values():
            for layer in layers:
                layer.to(device)

        return self

    def set_multiplier(self, multiplier):
        for layers in self.layers.values():
            for layer in layers:
                layer.multiplier = multiplier

        return self

    def eval(self):
        for layers in self.layers.values():
            for layer in layers:
                layer.eval()
                for param in layer.parameters():
                    param.requires_grad = False

    def save(self, filename):
        state_dict = {}
        optimizer_saved_dict = {}
        for k, v in self.layers.items():
            state_dict[k] = (v[0].state_dict(), v[1].state_dict())
        state_dict['step'] = self.step
        state_dict['name'] = self.name
        state_dict['layer_structure'] = self.layer_structure
        state_dict['activation_func'] = self.activation_func
        state_dict['is_layer_norm'] = self.add_layer_norm
        state_dict['weight_initialization'] = self.weight_init
        state_dict['sd_checkpoint'] = self.sd_checkpoint
        state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
        state_dict['activate_output'] = self.activate_output
        state_dict['use_dropout'] = self.use_dropout
        state_dict['dropout_structure'] = self.dropout_structure
        state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout
        state_dict['optional_info'] = self.optional_info if self.optional_info else None
        if self.optimizer_name is not None:
            optimizer_saved_dict['optimizer_name'] = self.optimizer_name
        torch.save(state_dict, filename)
        if shared.opts.save_optimizer_state and self.optimizer_state_dict:
            optimizer_saved_dict['hash'] = self.shorthash()
            optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
            torch.save(optimizer_saved_dict, f"{filename}.optim")

    def load(self, filename):
        self.filename = filename if os.path.exists(filename) else os.path.join(shared.opts.hypernetwork_dir, filename)
        if self.name is None:
            self.name = os.path.splitext(os.path.basename(self.filename))[0]
        with progress.open(self.filename, 'rb', description=f'Load hypernetwork: [cyan]{self.filename}', auto_refresh=True, console=shared.console) as f:
            state_dict = torch.load(f, map_location='cpu')
        self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
        self.optional_info = state_dict.get('optional_info', None)
        self.activation_func = state_dict.get('activation_func', None)
        self.weight_init = state_dict.get('weight_initialization', 'Normal')
        self.add_layer_norm = state_dict.get('is_layer_norm', False)
        self.dropout_structure = state_dict.get('dropout_structure', None)
        self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False)
        self.activate_output = state_dict.get('activate_output', True)
        self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
        # Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0.
        if self.dropout_structure is None:
            self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
        if shared.opts.print_hypernet_extra:
            if self.optional_info is not None:
                print(f"  INFO:\n {self.optional_info}\n")
            print(f"  Layer structure: {self.layer_structure}")
            print(f"  Activation function: {self.activation_func}")
            print(f"  Weight initialization: {self.weight_init}")
            print(f"  Layer norm: {self.add_layer_norm}")
            print(f"  Dropout usage: {self.use_dropout}" )
            print(f"  Activate last layer: {self.activate_output}")
            print(f"  Dropout structure: {self.dropout_structure}")
        optimizer_saved_dict = torch.load(self.filename + '.optim', map_location='cpu') if os.path.exists(self.filename + '.optim') else {}
        if self.shorthash() == optimizer_saved_dict.get('hash', None):
            self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
        else:
            self.optimizer_state_dict = None
        if self.optimizer_state_dict:
            self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
            if shared.opts.print_hypernet_extra:
                print("Load existing optimizer from checkpoint")
                print(f"Optimizer name is {self.optimizer_name}")
        else:
            self.optimizer_name = "AdamW"
            if shared.opts.print_hypernet_extra:
                print("No saved optimizer exists in checkpoint")
        for size, sd in state_dict.items():
            if type(size) == int:
                self.layers[size] = (
                    HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
                                       self.add_layer_norm, self.activate_output, self.dropout_structure),
                    HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
                                       self.add_layer_norm, self.activate_output, self.dropout_structure),
                )
        self.name = state_dict.get('name', self.name)
        self.step = state_dict.get('step', 0)
        self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
        self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
        self.eval()

    def shorthash(self):
        sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}')
        return sha256[0:10] if sha256 else None


def list_hypernetworks(path):
    hypernetworks = {
        os.path.splitext(os.path.basename(hypernetwork_path))[0]: hypernetwork_path
        for hypernetwork_path
        in files_cache.list_files(path, ext_filter=['.pt'], recursive=files_cache.not_hidden)
    }
    return hypernetworks


def load_hypernetwork(name):
    path = shared.hypernetworks.get(name, None)
    if path is None:
        return None
    hypernetwork = Hypernetwork()
    try:
        hypernetwork.load(path)
    except Exception as e:
        errors.display(e, f'hypernetwork load: {path}')
        return None
    return hypernetwork


def load_hypernetworks(names, multipliers=None):
    already_loaded = {}
    for hypernetwork in shared.loaded_hypernetworks:
        if hypernetwork.name in names:
            already_loaded[hypernetwork.name] = hypernetwork
    shared.loaded_hypernetworks.clear()
    for i, name in enumerate(names):
        hypernetwork = already_loaded.get(name, None)
        if hypernetwork is None:
            hypernetwork = load_hypernetwork(name)
        if hypernetwork is None:
            continue
        hypernetwork.set_multiplier(multipliers[i] if multipliers else 1.0)
        shared.loaded_hypernetworks.append(hypernetwork)


def find_closest_hypernetwork_name(search: str):
    if not search:
        return None
    search = search.lower()
    applicable = [name for name in shared.hypernetworks if search in name.lower()]
    if not applicable:
        return None
    applicable = sorted(applicable, key=lambda name: len(name))
    return applicable[0]


def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):
    hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None)
    if hypernetwork_layers is None:
        return context_k, context_v
    if layer is not None:
        layer.hyper_k = hypernetwork_layers[0]
        layer.hyper_v = hypernetwork_layers[1]
    context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k)))
    context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v)))
    return context_k, context_v


def apply_hypernetworks(hypernetworks, context, layer=None):
    context_k = context
    context_v = context
    for hypernetwork in hypernetworks:
        context_k, context_v = apply_single_hypernetwork(hypernetwork, context_k, context_v, layer)
    return context_k, context_v


def attention_CrossAttention_forward(self, x, context=None, mask=None):
    h = self.heads
    q = self.to_q(x)
    context = default(context, x)
    context_k, context_v = apply_hypernetworks(shared.loaded_hypernetworks, context, self)
    k = self.to_k(context_k)
    v = self.to_v(context_v)
    q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))
    sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
    if mask is not None:
        mask = rearrange(mask, 'b ... -> b (...)')
        max_neg_value = -torch.finfo(sim.dtype).max
        mask = repeat(mask, 'b j -> (b h) () j', h=h)
        sim.masked_fill_(~mask, max_neg_value)
    # attention, what we cannot get enough of
    attn = sim.softmax(dim=-1)
    out = einsum('b i j, b j d -> b i d', attn, v)
    out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
    return self.to_out(out)


def stack_conds(conds):
    if len(conds) == 1:
        return torch.stack(conds)
    # same as in reconstruct_multicond_batch
    token_count = max([x.shape[0] for x in conds])
    for i in range(len(conds)):
        if conds[i].shape[0] != token_count:
            last_vector = conds[i][-1:]
            last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1])
            conds[i] = torch.vstack([conds[i], last_vector_repeated])
    return torch.stack(conds)


def statistics(data):
    if len(data) < 2:
        std = 0
    else:
        std = stdev(data)
    total_information = f"loss:{mean(data):.3f}" + "\u00B1" + f"({std/ (len(data) ** 0.5):.3f})"
    recent_data = data[-32:]
    if len(recent_data) < 2:
        std = 0
    else:
        std = stdev(recent_data)
    recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + "\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})"
    return total_information, recent_information


def report_statistics(loss_info:dict):
    keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
    for key in keys:
        try:
            print("Loss statistics for file " + key)
            info, recent = statistics(list(loss_info[key]))
            print(info)
            print(recent)
        except Exception as e:
            print(e)