File size: 4,850 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# https://github.com/ogkalu2/Merge-Stable-Diffusion-models-without-distortion
from collections import defaultdict
from random import shuffle
from typing import NamedTuple
import torch
from scipy.optimize import linear_sum_assignment
from modules.shared import log


SPECIAL_KEYS = [
    "first_stage_model.decoder.norm_out.weight",
    "first_stage_model.decoder.norm_out.bias",
    "first_stage_model.encoder.norm_out.weight",
    "first_stage_model.encoder.norm_out.bias",
    "model.diffusion_model.out.0.weight",
    "model.diffusion_model.out.0.bias",
]


class PermutationSpec(NamedTuple):
    perm_to_axes: dict
    axes_to_perm: dict


def permutation_spec_from_axes_to_perm(axes_to_perm: dict) -> PermutationSpec:
    perm_to_axes = defaultdict(list)
    for wk, axis_perms in axes_to_perm.items():
        for axis, perm in enumerate(axis_perms):
            if perm is not None:
                perm_to_axes[perm].append((wk, axis))
    return PermutationSpec(perm_to_axes=dict(perm_to_axes), axes_to_perm=axes_to_perm)


def get_permuted_param(ps: PermutationSpec, perm, k: str, params, except_axis=None):
    """Get parameter `k` from `params`, with the permutations applied."""
    w = params[k]
    for axis, p in enumerate(ps.axes_to_perm[k]):
        # Skip the axis we're trying to permute.
        if axis == except_axis:
            continue

        # None indicates that there is no permutation relevant to that axis.
        if p:
            w = torch.index_select(w, axis, perm[p].int())

    return w


def apply_permutation(ps: PermutationSpec, perm, params):
    """Apply a `perm` to `params`."""
    return {k: get_permuted_param(ps, perm, k, params) for k in params.keys()}


def update_model_a(ps: PermutationSpec, perm, model_a, new_alpha):
    for k in model_a:
        try:
            perm_params = get_permuted_param(
                ps, perm, k, model_a
            )
            model_a[k] = model_a[k] * (1 - new_alpha) + new_alpha * perm_params
        except RuntimeError:  # dealing with pix2pix and inpainting models
            continue
    return model_a


def inner_matching(
    n,
    ps,
    p,
    params_a,
    params_b,
    usefp16,
    progress,
    number,
    linear_sum,
    perm,
    device,
):
    A = torch.zeros((n, n), dtype=torch.float16) if usefp16 else torch.zeros((n, n))
    A = A.to(device)

    for wk, axis in ps.perm_to_axes[p]:
        w_a = params_a[wk]
        w_b = get_permuted_param(ps, perm, wk, params_b, except_axis=axis)
        w_a = torch.moveaxis(w_a, axis, 0).reshape((n, -1)).to(device)
        w_b = torch.moveaxis(w_b, axis, 0).reshape((n, -1)).T.to(device)

        if usefp16:
            w_a = w_a.half().to(device)
            w_b = w_b.half().to(device)

        try:
            A += torch.matmul(w_a, w_b)
        except RuntimeError:
            A += torch.matmul(torch.dequantize(w_a), torch.dequantize(w_b))

    A = A.cpu()
    ri, ci = linear_sum_assignment(A.detach().numpy(), maximize=True)
    A = A.to(device)

    assert (torch.tensor(ri) == torch.arange(len(ri))).all()

    eye_tensor = torch.eye(n).to(device)

    oldL = torch.vdot(
        torch.flatten(A).float(), torch.flatten(eye_tensor[perm[p].long()])
    )
    newL = torch.vdot(torch.flatten(A).float(), torch.flatten(eye_tensor[ci, :]))

    if usefp16:
        oldL = oldL.half()
        newL = newL.half()

    if newL - oldL != 0:
        linear_sum += abs((newL - oldL).item())
        number += 1
        log.debug(f"Merge Rebasin permutation: {p}={newL-oldL}")

    progress = progress or newL > oldL + 1e-12

    perm[p] = torch.Tensor(ci).to(device)

    return linear_sum, number, perm, progress


def weight_matching(
    ps: PermutationSpec,
    params_a,
    params_b,
    max_iter=1,
    init_perm=None,
    usefp16=False,
    device="cpu",
):
    perm_sizes = {
        p: params_a[axes[0][0]].shape[axes[0][1]]
        for p, axes in ps.perm_to_axes.items()
        if axes[0][0] in params_a.keys()
    }
    perm = {}
    perm = (
        {p: torch.arange(n).to(device) for p, n in perm_sizes.items()}
        if init_perm is None
        else init_perm
    )

    linear_sum = 0
    number = 0

    special_layers = ["P_bg324"]
    for _i in range(max_iter):
        progress = False
        shuffle(special_layers)
        for p in special_layers:
            n = perm_sizes[p]
            linear_sum, number, perm, progress = inner_matching(
                n,
                ps,
                p,
                params_a,
                params_b,
                usefp16,
                progress,
                number,
                linear_sum,
                perm,
                device,
            )
        progress = True
        if not progress:
            break

    average = linear_sum / number if number > 0 else 0
    return perm, average