File size: 5,014 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F

sys.path.append(os.path.dirname(__file__))
from warplayer import warp # pylint: disable=wrong-import-position


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
                  padding=padding, dilation=dilation, bias=True),
        nn.LeakyReLU(0.2, True)
    )

def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
                  padding=padding, dilation=dilation, bias=False),
        nn.BatchNorm2d(out_planes),
        nn.LeakyReLU(0.2, True)
    )

class ResConv(nn.Module):
    def __init__(self, c, dilation=1):
        super(ResConv, self).__init__()
        self.conv = nn.Conv2d(c, c, 3, 1, dilation, dilation=dilation, groups=1\
)
        self.beta = nn.Parameter(torch.ones((1, c, 1, 1)), requires_grad=True)
        self.relu = nn.LeakyReLU(0.2, True)

    def forward(self, x):
        return self.relu(self.conv(x) * self.beta + x)

class IFBlock(nn.Module):
    def __init__(self, in_planes, c=64):
        super(IFBlock, self).__init__()
        self.conv0 = nn.Sequential(
            conv(in_planes, c//2, 3, 2, 1),
            conv(c//2, c, 3, 2, 1),
            )
        self.convblock = nn.Sequential(
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
        )
        self.lastconv = nn.Sequential(
            nn.ConvTranspose2d(c, 4*6, 4, 2, 1),
            nn.PixelShuffle(2)
        )

    def forward(self, x, flow=None, scale=1):
        x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False)
        if flow is not None:
            flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False) * 1. / scale
            x = torch.cat((x, flow), 1)
        feat = self.conv0(x)
        feat = self.convblock(feat)
        tmp = self.lastconv(feat)
        tmp = F.interpolate(tmp, scale_factor=scale, mode="bilinear", align_corners=False)
        flow = tmp[:, :4] * scale
        mask = tmp[:, 4:5]
        return flow, mask

class IFNet(nn.Module):
    def __init__(self):
        super(IFNet, self).__init__()
        self.block0 = IFBlock(7, c=192)
        self.block1 = IFBlock(8+4, c=128)
        self.block2 = IFBlock(8+4, c=96)
        self.block3 = IFBlock(8+4, c=64)
        # self.contextnet = Contextnet()
        # self.unet = Unet()

    def forward( self, x, timestep=0.5, scale_list=[8, 4, 2, 1], training=False, fastmode=True, ensemble=False): # pylint: disable=dangerous-default-value, unused-argument
        if training is False:
            channel = x.shape[1] // 2
            img0 = x[:, :channel]
            img1 = x[:, channel:]
        if not torch.is_tensor(timestep):
            timestep = (x[:, :1].clone() * 0 + 1) * timestep
        else:
            timestep = timestep.repeat(1, 1, img0.shape[2], img0.shape[3])
        flow_list = []
        merged = []
        mask_list = []
        warped_img0 = img0
        warped_img1 = img1
        flow = None
        mask = None
        # loss_cons = 0
        block = [self.block0, self.block1, self.block2, self.block3]
        for i in range(4):
            if flow is None:
                flow, mask = block[i](torch.cat((img0[:, :3], img1[:, :3], timestep), 1), None, scale=scale_list[i])
                if ensemble:
                    f1, m1 = block[i](torch.cat((img1[:, :3], img0[:, :3], 1-timestep), 1), None, scale=scale_list[i])
                    flow = (flow + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2
                    mask = (mask + (-m1)) / 2
            else:
                f0, m0 = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], timestep, mask), 1), flow, scale=scale_list[i])
                if ensemble:
                    f1, m1 = block[i](torch.cat((warped_img1[:, :3], warped_img0[:, :3], 1-timestep, -mask), 1), torch.cat((flow[:, 2:4], flow[:, :2]), 1), scale=scale_list[i]) # pylint: disable=invalid-unary-operand-type
                    f0 = (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2
                    m0 = (m0 + (-m1)) / 2
                flow = flow + f0
                mask = mask + m0
            mask_list.append(mask)
            flow_list.append(flow)
            warped_img0 = warp(img0, flow[:, :2])
            warped_img1 = warp(img1, flow[:, 2:4])
            merged.append((warped_img0, warped_img1))
        mask_list[3] = torch.sigmoid(mask_list[3])
        merged[3] = merged[3][0] * mask_list[3] + merged[3][1] * (1 - mask_list[3])
        return flow_list, mask_list[3], merged