Spaces:
Runtime error
Runtime error
import time | |
import numpy as np | |
import re | |
import networks | |
import lora_patches | |
from modules import extra_networks, shared | |
# from https://github.com/cheald/sd-webui-loractl/blob/master/loractl/lib/utils.py | |
def get_stepwise(param, step, steps): | |
def sorted_positions(raw_steps): | |
steps = [[float(s.strip()) for s in re.split("[@~]", x)] | |
for x in re.split("[,;]", str(raw_steps))] | |
# If we just got a single number, just return it | |
if len(steps[0]) == 1: | |
return steps[0][0] | |
# Add implicit 1s to any steps which don't have a weight | |
steps = [[s[0], s[1] if len(s) == 2 else 1] for s in steps] | |
# Sort by index | |
steps.sort(key=lambda k: k[1]) | |
steps = [list(v) for v in zip(*steps)] | |
return steps | |
def calculate_weight(m, step, max_steps, step_offset=2): | |
if isinstance(m, list): | |
if m[1][-1] <= 1.0: | |
if max_steps > 0: | |
step = (step) / (max_steps - step_offset) | |
else: | |
step = 1.0 | |
else: | |
step = step | |
v = np.interp(step, m[1], m[0]) | |
return v | |
else: | |
return m | |
return calculate_weight(sorted_positions(param), step, steps) | |
class ExtraNetworkLora(extra_networks.ExtraNetwork): | |
def __init__(self): | |
super().__init__('lora') | |
self.active = False | |
self.errors = {} | |
networks.originals = lora_patches.LoraPatches() | |
"""mapping of network names to the number of errors the network had during operation""" | |
def activate(self, p, params_list, step=0): | |
t0 = time.time() | |
self.errors.clear() | |
if len(params_list) > 0: | |
self.active = True | |
networks.originals.apply() # apply patches | |
if networks.debug: | |
shared.log.debug("LoRA activate") | |
names = [] | |
te_multipliers = [] | |
unet_multipliers = [] | |
dyn_dims = [] | |
for params in params_list: | |
assert params.items | |
names.append(params.positional[0]) | |
te_multiplier = params.named.get("te", params.positional[1] if len(params.positional) > 1 else 1.0) | |
if isinstance(te_multiplier, str) and "@" in te_multiplier: | |
te_multiplier = get_stepwise(te_multiplier, step, p.steps) | |
else: | |
te_multiplier = float(te_multiplier) | |
unet_multiplier = [params.positional[2] if len(params.positional) > 2 else te_multiplier] * 3 | |
unet_multiplier = [params.named.get("unet", unet_multiplier[0])] * 3 | |
unet_multiplier[0] = params.named.get("in", unet_multiplier[0]) | |
unet_multiplier[1] = params.named.get("mid", unet_multiplier[1]) | |
unet_multiplier[2] = params.named.get("out", unet_multiplier[2]) | |
for i in range(len(unet_multiplier)): | |
if isinstance(unet_multiplier[i], str) and "@" in unet_multiplier[i]: | |
unet_multiplier[i] = get_stepwise(unet_multiplier[i], step, p.steps) | |
else: | |
unet_multiplier[i] = float(unet_multiplier[i]) | |
dyn_dim = int(params.positional[3]) if len(params.positional) > 3 else None | |
dyn_dim = int(params.named["dyn"]) if "dyn" in params.named else dyn_dim | |
te_multipliers.append(te_multiplier) | |
unet_multipliers.append(unet_multiplier) | |
dyn_dims.append(dyn_dim) | |
t1 = time.time() | |
networks.load_networks(names, te_multipliers, unet_multipliers, dyn_dims) | |
t2 = time.time() | |
if shared.opts.lora_add_hashes_to_infotext: | |
network_hashes = [] | |
for item in networks.loaded_networks: | |
shorthash = item.network_on_disk.shorthash | |
if not shorthash: | |
continue | |
alias = item.mentioned_name | |
if not alias: | |
continue | |
alias = alias.replace(":", "").replace(",", "") | |
network_hashes.append(f"{alias}: {shorthash}") | |
if network_hashes: | |
p.extra_generation_params["Lora hashes"] = ", ".join(network_hashes) | |
if len(names) > 0 and step == 0: | |
shared.log.info(f'LoRA apply: {names} patch={t1-t0:.2f} load={t2-t1:.2f}') | |
elif self.active: | |
self.active = False | |
def deactivate(self, p): | |
if shared.backend == shared.Backend.DIFFUSERS and hasattr(shared.sd_model, "unload_lora_weights") and hasattr(shared.sd_model, "text_encoder"): | |
if 'CLIP' in shared.sd_model.text_encoder.__class__.__name__ and not (shared.compiled_model_state is not None and shared.compiled_model_state.is_compiled is True): | |
if shared.opts.lora_fuse_diffusers: | |
shared.sd_model.unfuse_lora() | |
try: | |
shared.sd_model.unload_lora_weights() # fails for non-CLIP models | |
except Exception: | |
pass | |
if not self.active and getattr(networks, "originals", None ) is not None: | |
networks.originals.undo() # remove patches | |
if networks.debug: | |
shared.log.debug("LoRA deactivate") | |
if self.active and networks.debug: | |
shared.log.debug(f"LoRA end: load={networks.timer['load']:.2f} apply={networks.timer['apply']:.2f} restore={networks.timer['restore']:.2f}") | |
if self.errors: | |
p.comment("Networks with errors: " + ", ".join(f"{k} ({v})" for k, v in self.errors.items())) | |
for k, v in self.errors.items(): | |
shared.log.error(f'LoRA errors: file="{k}" errors={v}') | |
self.errors.clear() | |