Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
class FourierEmbedder(nn.Module): | |
def __init__(self, num_freqs=64, temperature=100): | |
super().__init__() | |
self.num_freqs = num_freqs | |
self.temperature = temperature | |
freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs) | |
freq_bands = freq_bands[None, None, None] | |
self.register_buffer("freq_bands", freq_bands, persistent=False) | |
def __call__(self, x): | |
x = self.freq_bands * x.unsqueeze(-1) | |
return torch.stack((x.sin(), x.cos()), dim=-1).permute(0, 1, 3, 4, 2).reshape(*x.shape[:2], -1) | |
class PositionNet(nn.Module): | |
def __init__(self, positive_len, out_dim, fourier_freqs=8): | |
super().__init__() | |
self.positive_len = positive_len | |
self.out_dim = out_dim | |
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs) | |
self.position_dim = fourier_freqs * 2 * 4 # 2: sin/cos, 4: xyxy | |
if isinstance(out_dim, tuple): | |
out_dim = out_dim[0] | |
self.linears = nn.Sequential( | |
nn.Linear(self.positive_len + self.position_dim, 512), | |
nn.SiLU(), | |
nn.Linear(512, 512), | |
nn.SiLU(), | |
nn.Linear(512, out_dim), | |
) | |
self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) | |
self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim])) | |
def forward(self, boxes, masks, positive_embeddings): | |
masks = masks.unsqueeze(-1) | |
# embedding position (it may includes padding as placeholder) | |
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 -> B*N*C | |
# learnable null embedding | |
positive_null = self.null_positive_feature.view(1, 1, -1) | |
xyxy_null = self.null_position_feature.view(1, 1, -1) | |
# replace padding with learnable null embedding | |
positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null | |
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null | |
objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1)) | |
return objs | |