test / scripts /face-details.py
bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
import os
import numpy as np
from PIL import Image, ImageDraw
from modules import shared, processing
from modules.face_restoration import FaceRestoration
class YoLoResult:
def __init__(self, score: float, box: list[int], mask: Image.Image = None, size: float = 0):
self.score = score
self.box = box
self.mask = mask
self.size = size
class FaceRestorerYolo(FaceRestoration):
def name(self):
return "Face HiRes"
def __init__(self):
from modules import paths
self.model = None
self.model_dir = os.path.join(paths.models_path, 'yolo')
self.model_name = 'yolov8n-face.pt'
self.model_url = 'https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8n-face.pt'
# self.model_name = 'yolov9-c-face.pt'
# self.model_url = 'https://github.com/akanametov/yolov9-face/releases/download/1.0/yolov9-c-face.pt'
def dependencies(self):
import installer
installer.install('ultralytics', ignore=False)
def predict(
self,
image: Image.Image,
offload: bool = False,
conf: float = 0.5,
iou: float = 0.5,
imgsz: int = 640,
half: bool = True,
device = 'cuda',
n: int = 5,
augment: bool = True,
agnostic: bool = False,
retina: bool = False,
mask: bool = True,
) -> list[YoLoResult]:
self.model.to(device)
predictions = self.model.predict(
source=[image],
stream=False,
verbose=False,
conf=conf,
iou=iou,
imgsz=imgsz,
half=half,
device=device,
max_det=n,
augment=augment,
agnostic_nms=agnostic,
retina_masks=retina,
)
if offload:
self.model.to('cpu')
result = []
for prediction in predictions:
boxes = prediction.boxes.xyxy.detach().int().cpu().numpy() if prediction.boxes is not None else []
scores = prediction.boxes.conf.detach().float().cpu().numpy() if prediction.boxes is not None else []
for score, box in zip(scores, boxes):
box = box.tolist()
mask_image = None
size = (box[2] - box[0]) * (box[3] - box[1]) / (image.width * image.height)
if mask:
mask_image = image.copy()
mask_image = Image.new('L', image.size, 0)
draw = ImageDraw.Draw(mask_image)
draw.rectangle(box, fill="white", outline=None, width=0)
result.append(YoLoResult(score=score, box=box, mask=mask_image, size=size))
return result
def load(self):
from modules import modelloader
self.dependencies()
if self.model is None:
model_file = modelloader.load_file_from_url(url=self.model_url, model_dir=self.model_dir, file_name=self.model_name)
if model_file is not None:
shared.log.info(f'Loading: type=FaceHires model={model_file}')
from ultralytics import YOLO # pylint: disable=import-outside-toplevel
self.model = YOLO(model_file)
def restore(self, np_image, p: processing.StableDiffusionProcessing = None):
from modules import devices, processing_class
if not hasattr(p, 'facehires'):
p.facehires = 0
if np_image is None or p.facehires >= p.batch_size * p.n_iter:
return np_image
self.load()
if self.model is None:
shared.log.error(f"Model load: type=FaceHires model='{self.model_name}' dir={self.model_dir} url={self.model_url}")
return np_image
image = Image.fromarray(np_image)
faces = self.predict(image, mask=True, device=devices.device, offload=shared.opts.face_restoration_unload)
if len(faces) == 0:
return np_image
# create backups
orig_apply_overlay = shared.opts.mask_apply_overlay
orig_p = p.__dict__.copy()
orig_cls = p.__class__
pp = None
shared.opts.data['mask_apply_overlay'] = True
args = {
'batch_size': 1,
'n_iter': 1,
'inpaint_full_res': True,
'inpainting_mask_invert': 0,
'inpainting_fill': 1, # no fill
'sampler_name': orig_p.get('hr_sampler_name', 'default'),
'steps': orig_p.get('hr_second_pass_steps', 0),
'negative_prompt': orig_p.get('refiner_negative', ''),
'denoising_strength': shared.opts.facehires_strength if shared.opts.facehires_strength > 0 else orig_p.get('denoising_strength', 0.3),
'styles': [],
'prompt': orig_p.get('refiner_prompt', ''),
# TODO facehires expose as tunable
'mask_blur': 10,
'inpaint_full_res_padding': 15,
'restore_faces': True,
}
p = processing_class.switch_class(p, processing.StableDiffusionProcessingImg2Img, args)
p.facehires += 1 # set flag to avoid recursion
if p.steps < 1:
p.steps = orig_p.get('steps', 0)
if len(p.prompt) == 0:
p.prompt = orig_p.get('all_prompts', [''])[0]
if len(p.negative_prompt) == 0:
p.negative_prompt = orig_p.get('all_negative_prompts', [''])[0]
shared.log.debug(f'Face HiRes: faces={[f.__dict__ for f in faces]} strength={p.denoising_strength} blur={p.mask_blur} padding={p.inpaint_full_res_padding} steps={p.steps}')
for face in faces:
if face.mask is None:
continue
if face.size < 0.0002 or face.size > 0.8:
shared.log.debug(f'Face HiRes skip: {face.__dict__}')
continue
p.init_images = [image]
p.image_mask = [face.mask]
p.recursion = True
pp = processing.process_images_inner(p)
del p.recursion
p.overlay_images = None # skip applying overlay twice
if pp is not None and pp.images is not None and len(pp.images) > 0:
image = pp.images[0] # update image to be reused for next face
# restore pipeline
p = processing_class.switch_class(p, orig_cls, orig_p)
p.init_images = getattr(orig_p, 'init_images', None)
p.image_mask = getattr(orig_p, 'image_mask', None)
shared.opts.data['mask_apply_overlay'] = orig_apply_overlay
np_image = np.array(image)
# shared.log.debug(f'Face HiRes complete: faces={len(faces)} time={t1-t0:.3f}')
return np_image
yolo = FaceRestorerYolo()
shared.face_restorers.append(yolo)