Spaces:
Runtime error
Runtime error
import torch | |
from diffusers.utils.torch_utils import randn_tensor | |
from modules import scripts, processing, shared, devices | |
from modules.processing_helpers import slerp | |
class Script(scripts.Script): | |
standalone = False | |
def title(self): | |
return 'Init Latents' | |
def show(self, is_img2img): | |
return scripts.AlwaysVisible if shared.backend == shared.Backend.DIFFUSERS else False | |
def get_latents(p): | |
generator_device = devices.cpu if shared.opts.diffusers_generator_device == "CPU" else shared.device | |
generator = [torch.Generator(generator_device).manual_seed(s) for s in p.seeds] | |
shape = (len(generator), shared.sd_model.unet.config.in_channels, p.height // shared.sd_model.vae_scale_factor, | |
p.width // shared.sd_model.vae_scale_factor) | |
latents = randn_tensor(shape, generator=generator, device=shared.sd_model._execution_device, dtype=shared.sd_model.unet.dtype) # pylint: disable=protected-access | |
var_generator = [torch.Generator(generator_device).manual_seed(ss) for ss in p.subseeds] | |
var_latents = randn_tensor(shape, generator=var_generator, device=shared.sd_model._execution_device, dtype=shared.sd_model.unet.dtype) # pylint: disable=protected-access | |
return latents, var_latents, generator, var_generator | |
def set_slerp(p, latents, var_latents, generator, var_generator): | |
if p.subseed_strength < 1: | |
p.init_latent = slerp(p.subseed_strength, latents, var_latents) | |
if p.subseed_strength == 1: | |
p.init_latent = var_latents | |
if 0 < p.subseed_strength <= 0.5: | |
p.generator = generator | |
if 0.5 < p.subseed_strength <= 1: | |
p.generator = var_generator | |
def process_batch(self, p: processing.StableDiffusionProcessing, *args, **kwargs): # pylint: disable=arguments-differ | |
if shared.backend != shared.Backend.DIFFUSERS: | |
return | |
args = list(args) | |
if p.subseed_strength != 0 and getattr(shared.sd_model, '_execution_device', None) is not None: | |
latents, var_latents, generator, var_generator = self.get_latents(p) | |
self.set_slerp(p, latents, var_latents, generator, var_generator) | |