import os import sys import torch import torch.nn as nn import torch.nn.functional as F sys.path.append(os.path.dirname(__file__)) from warplayer import warp # pylint: disable=wrong-import-position device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): return nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=True), nn.LeakyReLU(0.2, True) ) def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): return nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False), nn.BatchNorm2d(out_planes), nn.LeakyReLU(0.2, True) ) class ResConv(nn.Module): def __init__(self, c, dilation=1): super(ResConv, self).__init__() self.conv = nn.Conv2d(c, c, 3, 1, dilation, dilation=dilation, groups=1\ ) self.beta = nn.Parameter(torch.ones((1, c, 1, 1)), requires_grad=True) self.relu = nn.LeakyReLU(0.2, True) def forward(self, x): return self.relu(self.conv(x) * self.beta + x) class IFBlock(nn.Module): def __init__(self, in_planes, c=64): super(IFBlock, self).__init__() self.conv0 = nn.Sequential( conv(in_planes, c//2, 3, 2, 1), conv(c//2, c, 3, 2, 1), ) self.convblock = nn.Sequential( ResConv(c), ResConv(c), ResConv(c), ResConv(c), ResConv(c), ResConv(c), ResConv(c), ResConv(c), ) self.lastconv = nn.Sequential( nn.ConvTranspose2d(c, 4*6, 4, 2, 1), nn.PixelShuffle(2) ) def forward(self, x, flow=None, scale=1): x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False) if flow is not None: flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False) * 1. / scale x = torch.cat((x, flow), 1) feat = self.conv0(x) feat = self.convblock(feat) tmp = self.lastconv(feat) tmp = F.interpolate(tmp, scale_factor=scale, mode="bilinear", align_corners=False) flow = tmp[:, :4] * scale mask = tmp[:, 4:5] return flow, mask class IFNet(nn.Module): def __init__(self): super(IFNet, self).__init__() self.block0 = IFBlock(7, c=192) self.block1 = IFBlock(8+4, c=128) self.block2 = IFBlock(8+4, c=96) self.block3 = IFBlock(8+4, c=64) # self.contextnet = Contextnet() # self.unet = Unet() def forward( self, x, timestep=0.5, scale_list=[8, 4, 2, 1], training=False, fastmode=True, ensemble=False): # pylint: disable=dangerous-default-value, unused-argument if training is False: channel = x.shape[1] // 2 img0 = x[:, :channel] img1 = x[:, channel:] if not torch.is_tensor(timestep): timestep = (x[:, :1].clone() * 0 + 1) * timestep else: timestep = timestep.repeat(1, 1, img0.shape[2], img0.shape[3]) flow_list = [] merged = [] mask_list = [] warped_img0 = img0 warped_img1 = img1 flow = None mask = None # loss_cons = 0 block = [self.block0, self.block1, self.block2, self.block3] for i in range(4): if flow is None: flow, mask = block[i](torch.cat((img0[:, :3], img1[:, :3], timestep), 1), None, scale=scale_list[i]) if ensemble: f1, m1 = block[i](torch.cat((img1[:, :3], img0[:, :3], 1-timestep), 1), None, scale=scale_list[i]) flow = (flow + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2 mask = (mask + (-m1)) / 2 else: f0, m0 = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], timestep, mask), 1), flow, scale=scale_list[i]) if ensemble: f1, m1 = block[i](torch.cat((warped_img1[:, :3], warped_img0[:, :3], 1-timestep, -mask), 1), torch.cat((flow[:, 2:4], flow[:, :2]), 1), scale=scale_list[i]) # pylint: disable=invalid-unary-operand-type f0 = (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2 m0 = (m0 + (-m1)) / 2 flow = flow + f0 mask = mask + m0 mask_list.append(mask) flow_list.append(flow) warped_img0 = warp(img0, flow[:, :2]) warped_img1 = warp(img1, flow[:, 2:4]) merged.append((warped_img0, warped_img1)) mask_list[3] = torch.sigmoid(mask_list[3]) merged[3] = merged[3][0] * mask_list[3] + merged[3][1] * (1 - mask_list[3]) return flow_list, mask_list[3], merged