Spaces:
Running
Running
File size: 5,515 Bytes
2bb2e2d 7423c0b 2bb2e2d 50707ca 2bb2e2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import streamlit as st
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from PyPDF2 import PdfReader
import os
from io import BytesIO
import pickle
import pdfminer
from pdfminer.high_level import extract_text
import re
import PyPDF2
import textract
import tempfile
from docx import Document
nltk.download('punkt')
nltk.download('stopwords')
def preprocess_text(text):
words = word_tokenize(text.lower())
stop_words = set(stopwords.words('english'))
words = [word for word in words if word not in stop_words]
stemmer = PorterStemmer()
words = [stemmer.stem(word) for word in words]
return ' '.join(words)
def extract_text_from_pdf(pdf_content):
pdf_reader = PdfReader(BytesIO(pdf_content))
text = ''
for page in pdf_reader.pages:
text += page.extract_text()
return text
def extract_text_from_docx(docx_content):
doc = Document(BytesIO(docx_content))
text = " ".join(paragraph.text for paragraph in doc.paragraphs)
return text
def extract_text_from_txt(txt_content):
text = textract.process(input_filename=None, input_bytes=txt_content)
return text
def extract_text_from_resume(file_path):
file_extension = file_path.split('.')[-1].lower()
if file_extension == 'pdf':
return extract_text_from_pdf(file_path)
elif file_extension == 'docx':
return extract_text_from_docx(file_path)
elif file_extension == 'txt':
return extract_text_from_txt(file_path)
else:
raise ValueError(f"Unsupported file format: {file_extension}")
def clean_pdf_text(text):
text = re.sub('http\S+\s*', ' ', text)
text = re.sub('RT|cc', ' ', text)
text = re.sub('#\S+', '', text)
text = re.sub('@\S+', ' ', text)
text = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', text)
text = re.sub(r'[^\x00-\x7f]',r' ', text)
text = re.sub('\s+', ' ', text)
return text
def extract_candidate_name(text):
pattern = r'(?:Mr\.|Ms\.|Mrs\.)?\s?([A-Z][a-z]+)\s([A-Z][a-z]+)'
match = re.search(pattern, text)
if match:
return match.group(0)
return "Candidate Name Not Found"
def calculate_similarity(job_description, cvs, cv_file_names):
processed_job_desc = preprocess_text(job_description)
processed_cvs = [preprocess_text(cv) for cv in cvs]
all_text = [processed_job_desc] + processed_cvs
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(all_text)
similarity_scores = cosine_similarity(tfidf_matrix)[0][1:]
ranked_cvs = list(zip(cv_file_names, similarity_scores))
ranked_cvs.sort(key=lambda x: x[1], reverse=True)
return ranked_cvs
def rank_and_shortlist(job_description, cv_files, threshold=0.15):
cv_texts = []
cv_file_names = []
for cv_file in cv_files:
file_extension = os.path.splitext(cv_file.name)[1].lower()
try:
if file_extension == '.pdf':
cv_text = extract_text_from_pdf(cv_file.read())
elif file_extension == '.docx':
cv_text = extract_text_from_docx(cv_file.read())
elif file_extension == '.txt':
cv_text = cv_file.read().decode('utf-8', errors='ignore')
else:
st.warning(f"Unsupported file format: {file_extension}. Skipping file: {cv_file.name}")
continue
cv_texts.append(clean_pdf_text(cv_text))
cv_file_names.append(cv_file.name)
except Exception as e:
st.warning(f"Error processing file '{cv_file.name}': {str(e)}")
continue
if not cv_texts:
st.error("No valid resumes found. Please upload resumes in supported formats (PDF, DOCX, or TXT).")
return [], []
similarity_scores = calculate_similarity(job_description, cv_texts, cv_file_names)
ranked_cvs = [(cv_name, score) for (cv_name, score) in similarity_scores]
shortlisted_cvs = [(cv_name, score) for (cv_name, score) in ranked_cvs if score >= threshold]
return ranked_cvs, shortlisted_cvs
def main():
st.title("Resume Ranking App")
st.write("Upload the Job Description:")
job_description = st.text_area("Job Description", height=200, key='job_description')
st.write("Upload the Resumes :")
cv_files = st.file_uploader("Choose files", accept_multiple_files=True, key='cv_files')
if st.button("Submit"):
if job_description and cv_files:
# Rank and shortlist candidates
ranked_cvs, shortlisted_cvs = rank_and_shortlist(job_description, cv_files)
# Display ranking with larger text
st.markdown("### Ranking of Resumes:")
for rank, score in ranked_cvs:
st.markdown(f"**File Name:** {rank}, **Similarity Score:** {score:.2f}")
# Display shortlisted candidates with larger text
st.markdown("### Shortlisted Candidates:")
if not shortlisted_cvs: # Check if the shortlisted_cvs list is empty
st.markdown("None")
else:
for rank, score in shortlisted_cvs:
st.markdown(f"**File Name:** {rank}, **Similarity Score:** {score:.2f}")
else:
st.write("Please upload both the job description and resumes to proceed.")
if __name__ == "__main__":
main()
|