Spaces:
Runtime error
Runtime error
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings | |
from langchain import HuggingFaceHub | |
from langchain.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.chat_models import ChatOpenAI | |
from htmlTemplates import bot_template, user_template, css | |
from transformers import pipeline | |
import sys | |
import os | |
from dotenv import load_dotenv | |
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
def get_pdf_text(pdf_files): | |
text = "" | |
for pdf_file in pdf_files: | |
reader = PdfReader(pdf_file) | |
for page in reader.pages: | |
text += page.extract_text() | |
return text | |
def get_chunk_text(text): | |
text_splitter = CharacterTextSplitter( | |
separator = "\n", | |
chunk_size = 1000, | |
chunk_overlap = 200, | |
length_function = len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vector_store(text_chunks): | |
# For OpenAI Embeddings | |
#embeddings = OpenAIEmbeddings() | |
# For Huggingface Embeddings | |
#embeddings = HuggingFaceInstructEmbeddings(model_name = "hkunlp/instructor-xl") | |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") | |
vectorstore = FAISS.from_texts(texts = text_chunks, embedding = embeddings) | |
return vectorstore | |
def get_conversation_chain(vector_store): | |
# OpenAI Model | |
#llm = ChatOpenAI() | |
#HuggingFace Model | |
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl") | |
#llm = HuggingFaceHub(repo_id="tiiuae/falcon-40b-instruct", model_kwargs={"temperature":0.5, "max_length":512}) #出现超时timed out错误 | |
#llm = HuggingFaceHub(repo_id="meta-llama/Llama-2-70b-hf", model_kwargs={"min_length":100, "max_length":1024,"temperature":0.1}) | |
#repo_id="HuggingFaceH4/starchat-beta" | |
#llm = HuggingFaceHub(repo_id=repo_id, | |
# model_kwargs={"min_length":100, | |
# "max_new_tokens":1024, "do_sample":True, | |
# "temperature":0.1, | |
# "top_k":50, | |
# "top_p":0.95, "eos_token_id":49155}) | |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm = llm, | |
retriever = vector_store.as_retriever(), | |
memory = memory | |
) | |
print("***Start of printing Conversation_Chain***") | |
print(conversation_chain) | |
print("***End of printing Conversation_Chain***") | |
st.write("***Start of printing Conversation_Chain***") | |
st.write(conversation_chain) | |
st.write("***End of printing Conversation_Chain***") | |
return conversation_chain | |
def handle_user_input(question): | |
response = st.session_state.conversation({'question':question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title='Chat with Your own PDFs', page_icon=':books:') | |
st.write(css, unsafe_allow_html=True) | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header('Chat with Your own PDFs :books:') | |
question = st.text_input("Ask anything to your PDF: ") | |
if question: | |
handle_user_input(question) | |
with st.sidebar: | |
st.subheader("Upload your Documents Here: ") | |
pdf_files = st.file_uploader("Choose your PDF Files and Press OK", type=['pdf'], accept_multiple_files=True) | |
if st.button("OK"): | |
with st.spinner("Processing your PDFs..."): | |
# Get PDF Text | |
raw_text = get_pdf_text(pdf_files) | |
# Get Text Chunks | |
text_chunks = get_chunk_text(raw_text) | |
# Create Vector Store | |
vector_store = get_vector_store(text_chunks) | |
st.write("DONE") | |
# Create conversation chain | |
st.session_state.conversation = get_conversation_chain(vector_store) | |
if __name__ == '__main__': | |
main() |