binqiangliu's picture
Update app.py
859873c
raw
history blame
1.33 kB
from transformers import pipeline, Conversation
import gradio as gr
#这个Space主要是演示了可以直接使用Huggingface的pipeline构建AIApp,然后还刚好可以和Gradio的ChatInterface对应上!
chatbot = pipeline(model="facebook/blenderbot-400M-distill") #Working!
#https://huggingface.co/facebook/blenderbot-400M-distill/tree/main
#这个模型文件大小:730MB或1.46GB
#https://huggingface.co/facebook/blenderbot-400M-distill/tree/main?library=true
# Use a pipeline as a high-level helper
#from transformers import pipeline
#pipe = pipeline("conversational", model="facebook/blenderbot-400M-distill")
#chatbot = pipeline(model="HuggingFaceH4/starchat-beta")
#https://huggingface.co/HuggingFaceH4/starchat-beta/tree/main
#由于这个模型太大了(9.96+9.86+9.86+1.36GB),会导致如下错误:
#Runtime error
#Memory limit exceeded (16Gi)
#chatbot = pipeline(model="...")
message_list = []
response_list = []
def vanilla_chatbot(message, history):
conversation = Conversation(text=message, past_user_inputs=message_list, generated_responses=response_list)
conversation = chatbot(conversation)
return conversation.generated_responses[-1]
demo_chatbot = gr.ChatInterface(vanilla_chatbot, title="Vanilla Chatbot", description="Enter text to start chatting.")
demo_chatbot.launch()