File size: 6,494 Bytes
4a3ad95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import math
from functools import partial

import torch
from torch import nn
from torch.nn import functional as F

class SwishImplementation(torch.autograd.Function):
    @staticmethod
    def forward(ctx, i):
        result = i * torch.sigmoid(i)
        ctx.save_for_backward(i)
        return result

    @staticmethod
    def backward(ctx, grad_output):
        i = ctx.saved_variables[0]
        sigmoid_i = torch.sigmoid(i)
        return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))

class MemoryEfficientSwish(nn.Module):
    def forward(self, x):
        return SwishImplementation.apply(x)


def drop_connect(inputs, p, training):
    """ Drop connect. """
    if not training: return inputs
    batch_size = inputs.shape[0]
    keep_prob = 1 - p
    random_tensor = keep_prob
    random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
    binary_tensor = torch.floor(random_tensor)
    output = inputs / keep_prob * binary_tensor
    return output


def get_same_padding_conv2d(image_size=None):
     return partial(Conv2dStaticSamePadding, image_size=image_size)

def get_width_and_height_from_size(x):
    """ Obtains width and height from a int or tuple """
    if isinstance(x, int): return x, x
    if isinstance(x, list) or isinstance(x, tuple): return x
    else: raise TypeError()

def calculate_output_image_size(input_image_size, stride):
    """
    计算出 Conv2dSamePadding with a stride.
    """
    if input_image_size is None: return None
    image_height, image_width = get_width_and_height_from_size(input_image_size)
    stride = stride if isinstance(stride, int) else stride[0]
    image_height = int(math.ceil(image_height / stride))
    image_width = int(math.ceil(image_width / stride))
    return [image_height, image_width]



class Conv2dStaticSamePadding(nn.Conv2d):
    """ 2D Convolutions like TensorFlow, for a fixed image size"""

    def __init__(self, in_channels, out_channels, kernel_size, image_size=None, **kwargs):
        super().__init__(in_channels, out_channels, kernel_size, **kwargs)
        self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2

        # Calculate padding based on image size and save it
        assert image_size is not None
        ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size
        kh, kw = self.weight.size()[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2))
        else:
            self.static_padding = Identity()

    def forward(self, x):
        x = self.static_padding(x)
        x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
        return x

class Identity(nn.Module):
    def __init__(self, ):
        super(Identity, self).__init__()

    def forward(self, input):
        return input

# #MBConvBlock
class MBConvBlock(nn.Module):
    '''
    层 ksize3*3 输入32 输出16  conv1  stride步长1
    '''
    def __init__(self, ksize, input_filters, output_filters, expand_ratio=1, stride=1,image_size=224,drop_connect_rate=0.):
        super().__init__()
        self._bn_mom = 0.1
        self._bn_eps = 0.01
        self._se_ratio = 0.25
        self._input_filters = input_filters
        self._output_filters = output_filters
        self._expand_ratio = expand_ratio
        self._kernel_size = ksize
        self._stride = stride
        self._drop_connect_rate = drop_connect_rate
        inp = self._input_filters
        oup = self._input_filters * self._expand_ratio
        if self._expand_ratio != 1:
            self._expand_conv = nn.Conv2d(in_channels=inp, out_channels=oup, kernel_size=1,bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)


        # Depthwise convolution
        k = self._kernel_size
        s = self._stride        
        self._depthwise_conv = nn.Conv2d(in_channels=oup, out_channels=oup, groups=oup,
            kernel_size=k, stride=s, padding=1,bias=False)
        
        self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
        # Squeeze and Excitation layer, if desired
        num_squeezed_channels = max(1, int(self._input_filters * self._se_ratio))
        self._se_reduce = nn.Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
        self._se_expand = nn.Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)

        # Output phase
        final_oup = self._output_filters
        self._project_conv = nn.Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1,bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()

    def forward(self, inputs):
        """
        :param inputs: input tensor
        :return: output of block
        """

        # Expansion and Depthwise Convolution
        x = inputs
        if self._expand_ratio != 1:
            expand = self._expand_conv(inputs)
            bn0 = self._bn0(expand)
            x = self._swish(bn0)
        depthwise = self._depthwise_conv(x)
        bn1 = self._bn1(depthwise)
        x = self._swish(bn1)
        # Squeeze and Excitation
        x_squeezed = F.adaptive_avg_pool2d(x, 1)
        x_squeezed = self._se_reduce(x_squeezed)
        x_squeezed = self._swish(x_squeezed)
        x_squeezed = self._se_expand(x_squeezed)
        x = torch.sigmoid(x_squeezed) * x

        x = self._bn2(self._project_conv(x))

        # Skip connection and drop connect
        input_filters, output_filters = self._input_filters, self._output_filters
        if self._stride == 1 and input_filters == output_filters:
            if self._drop_connect_rate!=0:
                x = drop_connect(x, p=self._drop_connect_rate, training=self.training)
            x = x + inputs  # skip connection
        return x
if __name__ == '__main__':
    input=torch.randn(1,3,112,112)
    mbconv=MBConvBlock(ksize=3,input_filters=3,output_filters=3,expand_ratio=4,stride=1)
    print(mbconv)
    out=mbconv(input)
    print(out.shape)