Spaces:
Build error
Build error
File size: 6,494 Bytes
4a3ad95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import math
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
class SwishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, i):
result = i * torch.sigmoid(i)
ctx.save_for_backward(i)
return result
@staticmethod
def backward(ctx, grad_output):
i = ctx.saved_variables[0]
sigmoid_i = torch.sigmoid(i)
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))
class MemoryEfficientSwish(nn.Module):
def forward(self, x):
return SwishImplementation.apply(x)
def drop_connect(inputs, p, training):
""" Drop connect. """
if not training: return inputs
batch_size = inputs.shape[0]
keep_prob = 1 - p
random_tensor = keep_prob
random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
binary_tensor = torch.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
def get_same_padding_conv2d(image_size=None):
return partial(Conv2dStaticSamePadding, image_size=image_size)
def get_width_and_height_from_size(x):
""" Obtains width and height from a int or tuple """
if isinstance(x, int): return x, x
if isinstance(x, list) or isinstance(x, tuple): return x
else: raise TypeError()
def calculate_output_image_size(input_image_size, stride):
"""
计算出 Conv2dSamePadding with a stride.
"""
if input_image_size is None: return None
image_height, image_width = get_width_and_height_from_size(input_image_size)
stride = stride if isinstance(stride, int) else stride[0]
image_height = int(math.ceil(image_height / stride))
image_width = int(math.ceil(image_width / stride))
return [image_height, image_width]
class Conv2dStaticSamePadding(nn.Conv2d):
""" 2D Convolutions like TensorFlow, for a fixed image size"""
def __init__(self, in_channels, out_channels, kernel_size, image_size=None, **kwargs):
super().__init__(in_channels, out_channels, kernel_size, **kwargs)
self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2
# Calculate padding based on image size and save it
assert image_size is not None
ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size
kh, kw = self.weight.size()[-2:]
sh, sw = self.stride
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
if pad_h > 0 or pad_w > 0:
self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2))
else:
self.static_padding = Identity()
def forward(self, x):
x = self.static_padding(x)
x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
return x
class Identity(nn.Module):
def __init__(self, ):
super(Identity, self).__init__()
def forward(self, input):
return input
# #MBConvBlock
class MBConvBlock(nn.Module):
'''
层 ksize3*3 输入32 输出16 conv1 stride步长1
'''
def __init__(self, ksize, input_filters, output_filters, expand_ratio=1, stride=1,image_size=224,drop_connect_rate=0.):
super().__init__()
self._bn_mom = 0.1
self._bn_eps = 0.01
self._se_ratio = 0.25
self._input_filters = input_filters
self._output_filters = output_filters
self._expand_ratio = expand_ratio
self._kernel_size = ksize
self._stride = stride
self._drop_connect_rate = drop_connect_rate
inp = self._input_filters
oup = self._input_filters * self._expand_ratio
if self._expand_ratio != 1:
self._expand_conv = nn.Conv2d(in_channels=inp, out_channels=oup, kernel_size=1,bias=False)
self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
# Depthwise convolution
k = self._kernel_size
s = self._stride
self._depthwise_conv = nn.Conv2d(in_channels=oup, out_channels=oup, groups=oup,
kernel_size=k, stride=s, padding=1,bias=False)
self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
# Squeeze and Excitation layer, if desired
num_squeezed_channels = max(1, int(self._input_filters * self._se_ratio))
self._se_reduce = nn.Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
self._se_expand = nn.Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)
# Output phase
final_oup = self._output_filters
self._project_conv = nn.Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1,bias=False)
self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
self._swish = MemoryEfficientSwish()
def forward(self, inputs):
"""
:param inputs: input tensor
:return: output of block
"""
# Expansion and Depthwise Convolution
x = inputs
if self._expand_ratio != 1:
expand = self._expand_conv(inputs)
bn0 = self._bn0(expand)
x = self._swish(bn0)
depthwise = self._depthwise_conv(x)
bn1 = self._bn1(depthwise)
x = self._swish(bn1)
# Squeeze and Excitation
x_squeezed = F.adaptive_avg_pool2d(x, 1)
x_squeezed = self._se_reduce(x_squeezed)
x_squeezed = self._swish(x_squeezed)
x_squeezed = self._se_expand(x_squeezed)
x = torch.sigmoid(x_squeezed) * x
x = self._bn2(self._project_conv(x))
# Skip connection and drop connect
input_filters, output_filters = self._input_filters, self._output_filters
if self._stride == 1 and input_filters == output_filters:
if self._drop_connect_rate!=0:
x = drop_connect(x, p=self._drop_connect_rate, training=self.training)
x = x + inputs # skip connection
return x
if __name__ == '__main__':
input=torch.randn(1,3,112,112)
mbconv=MBConvBlock(ksize=3,input_filters=3,output_filters=3,expand_ratio=4,stride=1)
print(mbconv)
out=mbconv(input)
print(out.shape) |