metaformer / inference.py
joshvm's picture
update to torch2
8f243be
from transformers import AutoTokenizer, AutoModel
import torch
from PIL import Image
from config import get_inference_config
from models import build_model
from torch.autograd import Variable
from torchvision.transforms import transforms
import numpy as np
import argparse
from pycocotools.coco import COCO
import requests
import os
from tqdm.auto import tqdm
try:
from apex import amp
except ImportError:
amp = None
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
class Namespace:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def model_config(config_path):
args = Namespace(cfg=config_path)
config = get_inference_config(args)
return config
def read_class_names(file_path):
file = open(file_path, 'r')
lines = file.readlines()
class_list = []
for l in lines:
line = l.strip()
# class_list.append(line[0])
class_list.append(line)
classes = tuple(class_list)
return classes
def read_class_names_coco(file_path):
dataset = COCO(file_path)
classes = [dataset.cats[k]['name'] for k in sorted(dataset.cats.keys())]
with open("names.txt", 'w') as fp:
for c in classes:
fp.write(f"{c}\n")
return classes
class GenerateEmbedding:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
self.model = AutoModel.from_pretrained("bert-base-uncased")
def generate(self, text_file):
text_list = []
with open(text_file, 'r') as f_text:
for line in f_text:
line = line.encode(encoding='UTF-8', errors='strict')
line = line.replace(b'\xef\xbf\xbd\xef\xbf\xbd', b' ')
line = line.decode('UTF-8', 'strict')
text_list.append(line)
# data = f_text.read()
select_index = np.random.randint(len(text_list))
inputs = self.tokenizer(text_list[select_index], return_tensors="pt", padding="max_length",
truncation=True, max_length=32)
outputs = self.model(**inputs)
embedding_mean = outputs[1].mean(dim=0).reshape(1, -1).detach().numpy()
embedding_full = outputs[1].detach().numpy()
embedding_words = outputs[0] # outputs[0].detach().numpy()
return None, None, embedding_words
class Inference:
def __init__(self, config_path, model_path, names_path):
self.config_path = config_path
self.model_path = model_path
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.classes = read_class_names(names_path)
self.config = model_config(self.config_path)
self.model = build_model(self.config)
self.checkpoint = torch.load(self.model_path, map_location='cpu')
if 'model' in self.checkpoint:
self.model.load_state_dict(self.checkpoint['model'], strict=False)
else:
self.model.load_state_dict(self.checkpoint, strict=False)
self.model.eval()
self.model.to(self.device)
self.topk = 10
self.embedding_gen = GenerateEmbedding()
self.transform_img = transforms.Compose([
transforms.Resize((self.config.DATA.IMG_SIZE, self.config.DATA.IMG_SIZE), interpolation=Image.BILINEAR),
transforms.ToTensor(), # transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
])
def infer(self, img_path, meta_data_path, topk=None):
if isinstance(img_path, str):
if img_path.startswith("http"):
img = Image.open(requests.get(img_path, stream=True).raw).convert('RGB')
else:
img = Image.open(img_path).convert('RGB')
else:
img = img_path
"""
_, _, meta = self.embedding_gen(meta_data_path)
meta = meta.to(self.device)
"""
meta = None
img = self.transform_img(img)
img.unsqueeze_(0)
img = img.to(self.device)
img = Variable(img).to(self.device)
out = self.model(img, meta)
f = torch.nn.Softmax(dim=1)
y_pred = f(out)
indices = reversed(torch.argsort(y_pred, dim=1).squeeze().tolist())
if topk is not None:
predict = [{self.classes[idx] : y_pred.squeeze()[idx].cpu().item() for idx in indices[:topk]}]
return predict
else:
return {self.classes[idx] : y_pred.squeeze()[idx].cpu().item() for idx in indices}
def parse_option():
parser = argparse.ArgumentParser('MetaFG Inference script', add_help=False)
parser.add_argument('--cfg', type=str, metavar="FILE", help='path to config file', default="configs/MetaFG_2_224.yaml")
# easy config modification
parser.add_argument('--model-path', type=str, help="path to model data", default="ckpt_epoch_12.pth")
parser.add_argument('--img-path', type=str, help='path to image')
parser.add_argument('--img-folder', type=str, help='path to image')
parser.add_argument('--meta-path', default="meta.txt", type=str, help='path to meta data')
parser.add_argument('--names-path', default="names_mf2.txt", type=str, help='path to meta data')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_option()
model = Inference(config_path=args.cfg,
model_path=args.model_path,
names_path=args.names_path)
from glob import glob
glob_imgs = glob(os.path.join(args.img_folder, "*.jpg"))
out_dir = f"results_{os.path.splitext(os.path.basename(args.model_path))[0]}"
os.makedirs(out_dir, exist_ok=True)
for img in tqdm(glob_imgs):
try:
res = model.infer(img_path=img, meta_data_path=args.meta_path)
except KeyboardInterrupt:
break
except Exception as e:
print(e)
continue
out = {}
out['preds'] = res
"""
# Out is a list of (class, score). Return true/false if the top1 class is correct
out['top1_correct'] = '_'.join(res[0][1].split(' ')).lower() in os.path.basename(img).lower()
out['top5_correct'] = False
print(os.path.basename(img).lower())
for i in range(5):
out['top5_correct'] |= '_'.join(res[i][1].split(' ')).lower() in os.path.basename(img).lower()
print('_'.join(res[i][1].split(' ')).lower())
out['top10_correct'] = False
for i in range(10):
out['top10_correct'] |= '_'.join(res[i][1].split(' ')).lower() in os.path.basename(img).lower()
"""
# output json with inference results, use image basename
# as filename
import json
with open(os.path.join(out_dir, os.path.splitext(os.path.basename(img))[0]+".json"), 'w') as fp:
json.dump(out, fp, indent=1)
# Usage: python inference.py --cfg 'path/to/cfg' --model_path 'path/to/model' --img-path 'path/to/img' --meta-path 'path/to/meta'