Spaces:
Build error
Build error
# -------------------------------------------------------- | |
# Swin Transformer | |
# Copyright (c) 2021 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Ze Liu | |
# -------------------------------------------------------- | |
import torch | |
from timm.scheduler.cosine_lr import CosineLRScheduler | |
from timm.scheduler.step_lr import StepLRScheduler | |
from timm.scheduler.scheduler import Scheduler | |
def build_scheduler(config, optimizer, n_iter_per_epoch): | |
num_steps = int(config.TRAIN.EPOCHS * n_iter_per_epoch) | |
warmup_steps = int(config.TRAIN.WARMUP_EPOCHS * n_iter_per_epoch) | |
decay_steps = int(config.TRAIN.LR_SCHEDULER.DECAY_EPOCHS * n_iter_per_epoch) | |
lr_scheduler = None | |
if config.TRAIN.LR_SCHEDULER.NAME == 'cosine': | |
lr_scheduler = CosineLRScheduler( | |
optimizer, | |
t_initial=num_steps, | |
lr_min=config.TRAIN.MIN_LR, | |
warmup_lr_init=config.TRAIN.WARMUP_LR, | |
warmup_t=warmup_steps, | |
cycle_limit=1, | |
t_in_epochs=False, | |
) | |
elif config.TRAIN.LR_SCHEDULER.NAME == 'linear': | |
lr_scheduler = LinearLRScheduler( | |
optimizer, | |
t_initial=num_steps, | |
lr_min_rate=0.01, | |
warmup_lr_init=config.TRAIN.WARMUP_LR, | |
warmup_t=warmup_steps, | |
t_in_epochs=False, | |
) | |
elif config.TRAIN.LR_SCHEDULER.NAME == 'step': | |
lr_scheduler = StepLRScheduler( | |
optimizer, | |
decay_t=decay_steps, | |
decay_rate=config.TRAIN.LR_SCHEDULER.DECAY_RATE, | |
warmup_lr_init=config.TRAIN.WARMUP_LR, | |
warmup_t=warmup_steps, | |
t_in_epochs=False, | |
) | |
return lr_scheduler | |
class LinearLRScheduler(Scheduler): | |
def __init__(self, | |
optimizer: torch.optim.Optimizer, | |
t_initial: int, | |
lr_min_rate: float, | |
warmup_t=0, | |
warmup_lr_init=0., | |
t_in_epochs=True, | |
noise_range_t=None, | |
noise_pct=0.67, | |
noise_std=1.0, | |
noise_seed=42, | |
initialize=True, | |
) -> None: | |
super().__init__( | |
optimizer, param_group_field="lr", | |
noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, | |
initialize=initialize) | |
self.t_initial = t_initial | |
self.lr_min_rate = lr_min_rate | |
self.warmup_t = warmup_t | |
self.warmup_lr_init = warmup_lr_init | |
self.t_in_epochs = t_in_epochs | |
if self.warmup_t: | |
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] | |
super().update_groups(self.warmup_lr_init) | |
else: | |
self.warmup_steps = [1 for _ in self.base_values] | |
def _get_lr(self, t): | |
if t < self.warmup_t: | |
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] | |
else: | |
t = t - self.warmup_t | |
total_t = self.t_initial - self.warmup_t | |
lrs = [v - ((v - v * self.lr_min_rate) * (t / total_t)) for v in self.base_values] | |
return lrs | |
def get_epoch_values(self, epoch: int): | |
if self.t_in_epochs: | |
return self._get_lr(epoch) | |
else: | |
return None | |
def get_update_values(self, num_updates: int): | |
if not self.t_in_epochs: | |
return self._get_lr(num_updates) | |
else: | |
return None | |