Spaces:
Build error
Build error
Syed Abdul Gaffar Shakhadri
commited on
added inference script
Browse files- inference.py +125 -0
inference.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModel
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from config import get_inference_config
|
5 |
+
from models import build_model
|
6 |
+
from torch.autograd import Variable
|
7 |
+
from torchvision.transforms import transforms
|
8 |
+
import numpy as np
|
9 |
+
import argparse
|
10 |
+
|
11 |
+
try:
|
12 |
+
from apex import amp
|
13 |
+
except ImportError:
|
14 |
+
amp = None
|
15 |
+
|
16 |
+
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
|
17 |
+
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
|
18 |
+
|
19 |
+
|
20 |
+
class Namespace:
|
21 |
+
def __init__(self, **kwargs):
|
22 |
+
self.__dict__.update(kwargs)
|
23 |
+
|
24 |
+
|
25 |
+
def model_config(config_path):
|
26 |
+
args = Namespace(cfg=config_path)
|
27 |
+
config = get_inference_config(args)
|
28 |
+
return config
|
29 |
+
|
30 |
+
|
31 |
+
def read_class_names(file_path):
|
32 |
+
file = open(file_path, 'r')
|
33 |
+
lines = file.readlines()
|
34 |
+
class_list = []
|
35 |
+
|
36 |
+
for l in lines:
|
37 |
+
line = l.strip().split()
|
38 |
+
# class_list.append(line[0])
|
39 |
+
class_list.append(line[1][4:])
|
40 |
+
|
41 |
+
classes = tuple(class_list)
|
42 |
+
return classes
|
43 |
+
|
44 |
+
|
45 |
+
class GenerateEmbedding:
|
46 |
+
def __init__(self, text_file):
|
47 |
+
self.text_file = text_file
|
48 |
+
|
49 |
+
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
50 |
+
self.model = AutoModel.from_pretrained("bert-base-uncased")
|
51 |
+
|
52 |
+
def generate(self):
|
53 |
+
text_list = []
|
54 |
+
with open(self.text_file, 'r') as f_text:
|
55 |
+
for line in f_text:
|
56 |
+
line = line.encode(encoding='UTF-8', errors='strict')
|
57 |
+
line = line.replace(b'\xef\xbf\xbd\xef\xbf\xbd', b' ')
|
58 |
+
line = line.decode('UTF-8', 'strict')
|
59 |
+
text_list.append(line)
|
60 |
+
# data = f_text.read()
|
61 |
+
select_index = np.random.randint(len(text_list))
|
62 |
+
inputs = self.tokenizer(text_list[select_index], return_tensors="pt", padding="max_length",
|
63 |
+
truncation=True, max_length=32)
|
64 |
+
outputs = self.model(**inputs)
|
65 |
+
embedding_mean = outputs[1].mean(dim=0).reshape(1, -1).detach().numpy()
|
66 |
+
embedding_full = outputs[1].detach().numpy()
|
67 |
+
embedding_words = outputs[0] # outputs[0].detach().numpy()
|
68 |
+
return None, None, embedding_words
|
69 |
+
|
70 |
+
|
71 |
+
class Inference:
|
72 |
+
def __init__(self, config_path, model_path):
|
73 |
+
self.config_path = config_path
|
74 |
+
self.model_path = model_path
|
75 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
76 |
+
# self.classes = ("cat", "dog")
|
77 |
+
self.classes = read_class_names(r"D:\dataset\CUB_200_2011\CUB_200_2011\classes_custom.txt")
|
78 |
+
|
79 |
+
self.config = model_config(self.config_path)
|
80 |
+
self.model = build_model(self.config)
|
81 |
+
self.checkpoint = torch.load(self.model_path, map_location='cpu')
|
82 |
+
self.model.load_state_dict(self.checkpoint['model'], strict=False)
|
83 |
+
self.model.eval()
|
84 |
+
self.model.cuda()
|
85 |
+
|
86 |
+
self.transform_img = transforms.Compose([
|
87 |
+
transforms.Resize((224, 224), interpolation=Image.BILINEAR),
|
88 |
+
transforms.ToTensor(), # transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
89 |
+
transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
|
90 |
+
])
|
91 |
+
|
92 |
+
def infer(self, img_path, meta_data_path):
|
93 |
+
_, _, meta = GenerateEmbedding(meta_data_path).generate()
|
94 |
+
meta = meta.cuda()
|
95 |
+
img = Image.open(img_path).convert('RGB')
|
96 |
+
img = self.transform_img(img)
|
97 |
+
img.unsqueeze_(0)
|
98 |
+
img = img.cuda()
|
99 |
+
img = Variable(img).to(self.device)
|
100 |
+
out = self.model(img, meta)
|
101 |
+
|
102 |
+
_, pred = torch.max(out.data, 1)
|
103 |
+
predict = self.classes[pred.data.item()]
|
104 |
+
# print(Fore.MAGENTA + f"The Prediction is: {predict}")
|
105 |
+
return predict
|
106 |
+
|
107 |
+
|
108 |
+
def parse_option():
|
109 |
+
parser = argparse.ArgumentParser('MetaFG Inference script', add_help=False)
|
110 |
+
parser.add_argument('--cfg', type=str, default='D:/pycharmprojects/MetaFormer/configs/MetaFG_meta_bert_1_224.yaml', metavar="FILE", help='path to config file', )
|
111 |
+
# easy config modification
|
112 |
+
parser.add_argument('--model-path', default='D:\pycharmprojects\MetaFormer\output\MetaFG_meta_1\cub_200\ckpt_epoch_92.pth', type=str, help="path to model data")
|
113 |
+
parser.add_argument('--img-path', default=r"D:\dataset\CUB_200_2011\CUB_200_2011\images\012.Yellow_headed_Blackbird\Yellow_Headed_Blackbird_0003_8337.jpg", type=str, help='path to image')
|
114 |
+
parser.add_argument('--meta-path', default=r"D:\dataset\CUB_200_2011\text_c10\012.Yellow_headed_Blackbird\Yellow_Headed_Blackbird_0003_8337.txt", type=str, help='path to meta data')
|
115 |
+
args = parser.parse_args()
|
116 |
+
return args
|
117 |
+
|
118 |
+
|
119 |
+
if __name__ == '__main__':
|
120 |
+
args = parse_option()
|
121 |
+
result = Inference(config_path=args.cfg,
|
122 |
+
model_path=args.model_path).infer(img_path=args.img_path, meta_data_path=args.meta_path)
|
123 |
+
print("Predicted: ", result)
|
124 |
+
|
125 |
+
# Usage: python inference.py --cfg 'path/to/cfg' --model_path 'path/to/model' --img-path 'path/to/img' --meta-path 'path/to/meta'
|