from inference import Inference import argparse import gradio as gr import glob def parse_option(): parser = argparse.ArgumentParser('MetaFG Inference script', add_help=False) parser.add_argument('--cfg', type=str, metavar="FILE", help='path to config file', default="configs/MetaFG_2_224.yaml") # easy config modification parser.add_argument('--model-path', type=str, help="path to model data", default="./ckpt_4_mf2.pth") parser.add_argument('--img-size', type=int, default=384, help='path to image') parser.add_argument('--meta-path', default="meta.txt", type=str, help='path to meta data') parser.add_argument('--names-path', default="names_mf2.txt", type=str, help='path to meta data') args = parser.parse_args() return args if __name__ == '__main__': args = parse_option() model = Inference(config_path=args.cfg, model_path=args.model_path, names_path=args.names_path) def classify(image): preds = model.infer(img_path=image, meta_data_path="meta.txt").squeeze() print(len(model.classes)) print(model.classes) confidences = {c: float(preds[i]) for i,c in enumerate(model.classes)} return confidences gr.Interface(pfn=classify, inputs=gr.Image(shape=(args.img_size, args.img_size), type="pil"), outputs=gr.Label(num_top_classes=10), examples=glob.glob("./example_images/*")).launch()