from torch import optim as optim def build_optimizer(config, model): """ Build optimizer, set weight decay of normalization to 0 by default. """ skip = {} skip_keywords = {} if hasattr(model, 'no_weight_decay'): skip = model.no_weight_decay() if hasattr(model, 'no_weight_decay_keywords'): skip_keywords = model.no_weight_decay_keywords() parameters = set_weight_decay(model, skip, skip_keywords,config.TRAIN.BASE_LR) opt_lower = config.TRAIN.OPTIMIZER.NAME.lower() optimizer = None if opt_lower == 'sgd': optimizer = optim.SGD(parameters, momentum=config.TRAIN.OPTIMIZER.MOMENTUM, nesterov=True, lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY) elif opt_lower == 'adamw': optimizer = optim.AdamW(parameters, eps=config.TRAIN.OPTIMIZER.EPS, betas=config.TRAIN.OPTIMIZER.BETAS, lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY) return optimizer # def set_weight_decay(model, skip_list=(), skip_keywords=(),lr=0.0): # has_decay = [] # no_decay = [] # high_lr = [] # for name, param in model.named_parameters(): # if not param.requires_grad: # continue # frozen weights # if len(param.shape) == 1 or name.endswith(".bias") or (name in skip_list) or \ # check_keywords_in_name(name, skip_keywords): # if 'meta' in name: # high_lr.append(param) # else: # no_decay.append(param) # # print(f"{name} has no weight decay") # else: # has_decay.append(param) # return [{'params': has_decay}, # # {'params':high_lr,'weight_decay': 0.,'lr':lr*10}, # {'params':high_lr,'lr':lr*20}, # {'params': no_decay, 'weight_decay': 0.}] def set_weight_decay(model, skip_list=(), skip_keywords=(),lr=0.0): has_decay = [] no_decay = [] for name, param in model.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or (name in skip_list) or \ check_keywords_in_name(name, skip_keywords): no_decay.append(param) # print(f"{name} has no weight decay") else: has_decay.append(param) return [{'params': has_decay}, {'params': no_decay, 'weight_decay': 0.}] def check_keywords_in_name(name, keywords=()): isin = False for keyword in keywords: if keyword in name: isin = True return isin