Spaces:
Runtime error
Runtime error
birgermoell
commited on
Commit
•
87110a5
1
Parent(s):
0c079e6
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import scipy.stats as stats
|
4 |
+
from fpdf import FPDF
|
5 |
+
import base64
|
6 |
+
import os
|
7 |
+
from plots import test_profile
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
# Function to calculate z-score
|
12 |
+
def calculate_z_score(test_score, mean, std_dev):
|
13 |
+
return (test_score - mean) / std_dev
|
14 |
+
|
15 |
+
def z_score_calculator(value, norm_mean, norm_sd):
|
16 |
+
z_value = (value - norm_mean) / norm_sd
|
17 |
+
stanine_value = round(1.25 * z_value + 5.5)
|
18 |
+
z_score = round(z_value, 2)
|
19 |
+
return z_score, stanine_value
|
20 |
+
|
21 |
+
def bnt_calculator(age, education, bnt):
|
22 |
+
if age <= 60 and education <= 12:
|
23 |
+
norm_mean = 54.5
|
24 |
+
norm_sd = 3.2
|
25 |
+
z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
|
26 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
27 |
+
elif age <= 60 and education > 12:
|
28 |
+
norm_mean = 54.0
|
29 |
+
norm_sd = 4.4
|
30 |
+
z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
|
31 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
32 |
+
elif age > 60 and education <= 12:
|
33 |
+
norm_mean = 54.8
|
34 |
+
norm_sd = 3.3
|
35 |
+
z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
|
36 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
37 |
+
elif age > 60 and education > 12:
|
38 |
+
norm_mean = 56.2
|
39 |
+
norm_sd = 3.4
|
40 |
+
z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
|
41 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
42 |
+
else:
|
43 |
+
print("missing value/ wrong format")
|
44 |
+
|
45 |
+
def fas_calculator(age, education, fas):
|
46 |
+
if age <= 60 and education <= 12:
|
47 |
+
norm_mean = 42.7
|
48 |
+
norm_sd = 13.7
|
49 |
+
z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
|
50 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
51 |
+
elif age <= 60 and education > 12:
|
52 |
+
norm_mean = 46.7
|
53 |
+
norm_sd = 13.7
|
54 |
+
z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
|
55 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
56 |
+
elif age > 60 and education <= 12:
|
57 |
+
norm_mean = 46.9
|
58 |
+
norm_sd = 10.4
|
59 |
+
z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
|
60 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
61 |
+
elif age > 60 and education > 12:
|
62 |
+
norm_mean = 51.6
|
63 |
+
norm_sd = 12.6
|
64 |
+
z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
|
65 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
66 |
+
else:
|
67 |
+
print("missing value/ wrong format")
|
68 |
+
|
69 |
+
def generate_graph(BNT_stanine, FAS_stanine):
|
70 |
+
# Create a plot
|
71 |
+
fig, ax = plt.subplots()
|
72 |
+
|
73 |
+
# Set axis labels and title
|
74 |
+
ax.set_xlabel('Stanine values')
|
75 |
+
ax.set_ylabel('Test')
|
76 |
+
|
77 |
+
# Set the y-axis to display the tests
|
78 |
+
ax.set_yticks([1, 2])
|
79 |
+
ax.set_yticklabels(['BNT', 'FAS'])
|
80 |
+
|
81 |
+
# Set the range of the x-axis
|
82 |
+
ax.set_xlim([0, 10])
|
83 |
+
|
84 |
+
# Add dots for BNT and FAS scores
|
85 |
+
ax.scatter(BNT_stanine, 1, s=100, label='BNT')
|
86 |
+
ax.scatter(FAS_stanine, 2, s=100, label='FAS')
|
87 |
+
|
88 |
+
# Add legend
|
89 |
+
ax.legend()
|
90 |
+
|
91 |
+
# Show the plot
|
92 |
+
# plt.show()
|
93 |
+
|
94 |
+
# Save the graph as a png file
|
95 |
+
fig.savefig('test_profile.png')
|
96 |
+
return 'test_profile.png'
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
def create_pdf(z_score, mean, std_dev, logo_path, plot_path):
|
101 |
+
pdf = FPDF()
|
102 |
+
pdf.add_page()
|
103 |
+
pdf.set_xy(0, 0)
|
104 |
+
pdf.set_font("Arial", size=12)
|
105 |
+
|
106 |
+
# Add logos
|
107 |
+
x_positions = [25, 85, 145]
|
108 |
+
for i, logo_path in enumerate(logo_paths):
|
109 |
+
pdf.image(logo_path, x=x_positions[i], y=8, w=40)
|
110 |
+
pdf.set_xy(10, 50)
|
111 |
+
|
112 |
+
|
113 |
+
# Add title and center it
|
114 |
+
title = "Z-Score Report"
|
115 |
+
pdf.set_font("Arial", style="B", size=16)
|
116 |
+
title_width = pdf.get_string_width(title) + 6
|
117 |
+
pdf.cell((210 - title_width) / 2)
|
118 |
+
pdf.cell(title_width, 10, title, 0, 1, "C")
|
119 |
+
|
120 |
+
# Add z-score and center it
|
121 |
+
pdf.set_font("Arial", size=12)
|
122 |
+
z_score_text = "Your z-score is: {:.2f}".format(z_score)
|
123 |
+
z_score_width = pdf.get_string_width(z_score_text) + 6
|
124 |
+
pdf.cell((210 - z_score_width) / 2)
|
125 |
+
pdf.cell(z_score_width, 10, z_score_text, 0, 1, "C")
|
126 |
+
|
127 |
+
# Add mean and standard deviation and center it
|
128 |
+
mean_std_text = "Mean: {}, Standard Deviation: {}".format(mean, std_dev)
|
129 |
+
mean_std_width = pdf.get_string_width(mean_std_text) + 6
|
130 |
+
pdf.cell((210 - mean_std_width) / 2)
|
131 |
+
pdf.cell(mean_std_width, 10, mean_std_text, 0, 1, "C")
|
132 |
+
|
133 |
+
# Add logo
|
134 |
+
pdf.image(plot_path, x=10, y=80, w=200)
|
135 |
+
# pdf.set_xy(10, 40)
|
136 |
+
|
137 |
+
# Add tool description and center it
|
138 |
+
pdf.set_xy(10, 230)
|
139 |
+
pdf.set_font("Arial", size=10)
|
140 |
+
description = "This PDF report was generated using the Z-Score Calculator Streamlit App."
|
141 |
+
pdf.multi_cell(0, 10, description, 0, "C")
|
142 |
+
|
143 |
+
# Add explanatory text about the collaboration between KI and KTH
|
144 |
+
pdf.set_xy(10, 255)
|
145 |
+
pdf.set_font("Arial", size=8)
|
146 |
+
collaboration_text = (
|
147 |
+
"Den här PDF:en är en del av ett samarbetsprojekt mellan Karolinska Institutet (KI) och "
|
148 |
+
"Kungliga Tekniska Högskolan (KTH) med målsättningen att använda artificiell intelligens (AI) och "
|
149 |
+
"teknik för att minska administration i sjukhusarbete. Projektet fokuserar på att utveckla och "
|
150 |
+
"implementera AI-baserade lösningar för att förbättra arbetsflöden, öka effektiviteten och "
|
151 |
+
"minska den administrativa bördan för sjukvårdspersonal. För frågor om formuläret kontakta Fredrik Sand fredrik.sand-aronsson@regionstockholm.se, för frågor om teknik kontakta Birger Moëll bmoell@kth.se."
|
152 |
+
)
|
153 |
+
line_width = 190
|
154 |
+
line_height = pdf.font_size_pt * 0.6
|
155 |
+
lines = collaboration_text.split(' ')
|
156 |
+
current_line = ''
|
157 |
+
for word in lines:
|
158 |
+
if pdf.get_string_width(current_line + word) < line_width:
|
159 |
+
current_line += word + ' '
|
160 |
+
else:
|
161 |
+
pdf.cell(line_width, line_height, current_line, 0, 1)
|
162 |
+
current_line = word + ' '
|
163 |
+
pdf.cell(line_width, line_height, current_line, 0, 1)
|
164 |
+
|
165 |
+
return pdf
|
166 |
+
|
167 |
+
def pdf_to_base64(pdf):
|
168 |
+
with open(pdf, "rb") as file:
|
169 |
+
return base64.b64encode(file.read()).decode('utf-8')
|
170 |
+
|
171 |
+
|
172 |
+
# Title and description
|
173 |
+
st.title("Z-Score Calculator")
|
174 |
+
st.write("Enter your test score, age, and education level to calculate the z-score.")
|
175 |
+
|
176 |
+
# Input fields
|
177 |
+
#test_score = st.number_input("Test Score", min_value=0, value=0, step=1)
|
178 |
+
age = st.number_input("Age", min_value=0, value=18, step=1)
|
179 |
+
education_level = st.number_input("Education Level in years", min_value=0, value=18, step=1)
|
180 |
+
isw = st.number_input("ISW", min_value=0, value=0, step=1)
|
181 |
+
bnt = st.number_input("BNT", min_value=0, value=0, step=1)
|
182 |
+
fas = st.number_input("FAS", min_value=0, value=0, step=1)
|
183 |
+
animal = st.number_input("Animal", min_value=0, value=0, step=1)
|
184 |
+
verb = st.number_input("Verb", min_value=0, value=0, step=1)
|
185 |
+
repetition = st.number_input("Repetition", min_value=0, value=0, step=1)
|
186 |
+
logicogrammatic = st.number_input("Logicogrammatic", min_value=0, value=0, step=1)
|
187 |
+
inference = st.number_input("Inference", min_value=0, value=0, step=1)
|
188 |
+
reading_speed = st.number_input("Reading Speed", min_value=0, value=0, step=1)
|
189 |
+
decoding_words = st.number_input("Decoding Words", min_value=0, value=0, step=1)
|
190 |
+
decoding_non_words = st.number_input("Decoding Non-Words", min_value=0, value=0, step=1)
|
191 |
+
months_backward = st.number_input("Months Backward", min_value=0, value=0, step=1)
|
192 |
+
pataka = st.number_input("Pataka", min_value=0, value=0, step=1)
|
193 |
+
|
194 |
+
|
195 |
+
# add all the tests
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
# Calculate mean and standard deviation based on age and education level
|
200 |
+
# For simplicity, we will use made-up values for mean and std_dev
|
201 |
+
mean = np.random.randint(50, 100)
|
202 |
+
std_dev = np.random.randint(10, 30)
|
203 |
+
|
204 |
+
# Calculate z-score and display result
|
205 |
+
if st.button("Calculate Z-Score"):
|
206 |
+
profile = test_profile(age, education_level, isw, bnt, fas)
|
207 |
+
|
208 |
+
# for each value in the profile, calculate the z-score
|
209 |
+
bnt_mean, bnt_std, z_bnt, stanine_bnt = bnt_calculator(age, education_level, bnt)
|
210 |
+
fas_mean, fas_std, z_fas, stanine_fas = fas_calculator(age, education_level, fas)
|
211 |
+
|
212 |
+
# z_score = calculate_z_score(test_score, mean, std_dev)
|
213 |
+
st.write(f"Your bnt z-score is: {z_bnt:.2f}")
|
214 |
+
st.write(f"Mean: {bnt_mean}, Standard Deviation: {bnt_std}")
|
215 |
+
|
216 |
+
st.write(f"Your fas z-score is: {z_fas:.2f}")
|
217 |
+
st.write(f"Mean: {fas_mean}, Standard Deviation: {fas_std}")
|
218 |
+
# Create PDF
|
219 |
+
# logo_path="logo.jpg"
|
220 |
+
|
221 |
+
logo_paths = ["logo.jpg", "logo2.jpg", "logo3.jpg"]
|
222 |
+
|
223 |
+
# create the plot from the dataframe
|
224 |
+
|
225 |
+
# check if education level is more than 12 years, if more than 12, set value to one, otherwise zero
|
226 |
+
education_level = 1 if education_level > 12 else 0
|
227 |
+
|
228 |
+
plot_path = generate_graph(stanine_bnt, stanine_fas)
|
229 |
+
|
230 |
+
# create an image from the plot and add to streamlit display
|
231 |
+
image = Image.open(plot_path)
|
232 |
+
st.image(image, caption='Stanine plot', use_column_width=True)
|
233 |
+
|
234 |
+
pdf_filename = "z_score_report.pdf"
|
235 |
+
pdf = create_pdf(z_bnt, bnt_mean, bnt_std, logo_paths, plot_path)
|
236 |
+
pdf.output(name=pdf_filename)
|
237 |
+
|
238 |
+
# Download PDF
|
239 |
+
with open(pdf_filename, "rb") as file:
|
240 |
+
base64_pdf = base64.b64encode(file.read()).decode('utf-8')
|
241 |
+
pdf_display = f'<a href="data:application/octet-stream;base64,{base64_pdf}" download="{pdf_filename}">Download PDF</a>'
|
242 |
+
st.markdown(pdf_display, unsafe_allow_html=True)
|
243 |
+
|
244 |
+
# Remove PDF file after download
|
245 |
+
if os.path.exists(pdf_filename):
|
246 |
+
os.remove(pdf_filename)
|