File size: 11,825 Bytes
913d3e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import gradio as gr
import os
import argparse
from easydict import EasyDict as edict
import yaml
import os.path as osp
import random
import numpy.random as npr
import sys

# sys.path.append('./code')

sys.path.append('/home/user/app/code')

# set up diffvg

# os.system('git clone https://github.com/BachiLi/diffvg.git')
os.system('git submodule update --init')
os.chdir('diffvg')
print(os.getcwd())
os.system('git submodule update --init --recursive')
print(os.getcwd())
os.system('python setup.py install --user')
sys.path.append("/home/user/.local/lib/python3.8/site-packages/diffvg-0.0.1-py3.8-linux-x86_64.egg")

os.chdir('/home/user/app')

import torch
from diffusers import StableDiffusionPipeline


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = None 
model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",
                                               torch_dtype=torch.float16).to(device)

from typing import Mapping
from tqdm import tqdm
import torch
from torch.optim.lr_scheduler import LambdaLR
import pydiffvg
import save_svg
from losses import SDSLoss, ToneLoss, ConformalLoss
from utils import (
    edict_2_dict,
    update,
    check_and_create_dir,
    get_data_augs,
    save_image,
    preprocess,
    learning_rate_decay,
    combine_word)
import warnings

TITLE="""<h1 style="font-size: 42px;" align="center">Word-As-Image for Semantic Typography</h1>"""
DESCRIPTION="""A demo for [Word-As-Image for Semantic Typography](https://wordasimage.github.io/Word-As-Image-Page/). By using Word-as-Image, a visual representation of the meaning of the word is created while maintaining legibility of the text and font style. 
Please select a semantic concept word and a letter you wish to generate, it will take ~5 minutes to perform 500 iterations."""

DESCRIPTION += '\n<p>This demo is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"> Creative Commons Attribution-ShareAlike 4.0 International License</a>.</p>'

if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
    DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'


warnings.filterwarnings("ignore")

pydiffvg.set_print_timing(False)
gamma = 1.0


def set_config(semantic_concept, word, letter, font_name, num_steps):
    
    cfg_d = edict()
    cfg_d.config = "code/config/base.yaml"
    cfg_d.experiment = "demo"

    with open(cfg_d.config, 'r') as f:
        cfg_full = yaml.load(f, Loader=yaml.FullLoader)

    cfg_key = cfg_d.experiment
    cfgs = [cfg_d]
    while cfg_key:
        cfgs.append(cfg_full[cfg_key])
        cfg_key = cfgs[-1].get('parent_config', 'baseline')
  
    cfg = edict()
    for options in reversed(cfgs):
        update(cfg, options)
    del cfgs

    cfg.semantic_concept = semantic_concept
    cfg.word = word
    cfg.optimized_letter = letter
    cfg.font = font_name
    cfg.seed = 0
    cfg.num_iter = num_steps
    
    if ' ' in cfg.word:
        raise gr.Error(f'should be only one word')
    cfg.caption = f"a {cfg.semantic_concept}. {cfg.prompt_suffix}"
    cfg.log_dir = f"output/{cfg.experiment}_{cfg.word}"
    if cfg.optimized_letter in cfg.word:
        cfg.optimized_letter = cfg.optimized_letter
    else:
        raise gr.Error(f'letter should be in word')

    cfg.letter = f"{cfg.font}_{cfg.optimized_letter}_scaled"
    cfg.target = f"code/data/init/{cfg.letter}"

    # set experiment dir
    signature = f"{cfg.letter}_concept_{cfg.semantic_concept}_seed_{cfg.seed}"
    cfg.experiment_dir = \
        osp.join(cfg.log_dir, cfg.font, signature)
    configfile = osp.join(cfg.experiment_dir, 'config.yaml')

    # create experiment dir and save config
    check_and_create_dir(configfile)
    with open(osp.join(configfile), 'w') as f:
        yaml.dump(edict_2_dict(cfg), f)

    if cfg.seed is not None:
        random.seed(cfg.seed)
        npr.seed(cfg.seed)
        torch.manual_seed(cfg.seed)
        torch.backends.cudnn.benchmark = False
    else:
        assert False
    return cfg


def init_shapes(svg_path, trainable: Mapping[str, bool]):
    svg = f'{svg_path}.svg'
    canvas_width, canvas_height, shapes_init, shape_groups_init = pydiffvg.svg_to_scene(svg)

    parameters = edict()

    # path points
    if trainable.point:
        parameters.point = []
        for path in shapes_init:
            path.points.requires_grad = True
            parameters.point.append(path.points)

    return shapes_init, shape_groups_init, parameters


def run_main_ex(semantic_concept, word, letter, font_name, num_steps):
    return list(next(run_main_app(semantic_concept, word, letter, font_name, num_steps, 1)))
                        
def run_main_app(semantic_concept, word, letter, font_name, num_steps, example=0):
    
    cfg = set_config(semantic_concept, word, letter, font_name, num_steps)

    pydiffvg.set_use_gpu(torch.cuda.is_available())

    print("preprocessing")
    preprocess(cfg.font, cfg.word, cfg.optimized_letter, cfg.level_of_cc)
    filename_init = os.path.join("code/data/init/", f"{cfg.font}_{cfg.word}_scaled.svg").replace(" ", "_")
    if not example:
        yield gr.update(value=filename_init,visible=True),gr.update(visible=False),gr.update(visible=False)

    sds_loss = SDSLoss(cfg, device, model)

    h, w = cfg.render_size, cfg.render_size

    data_augs = get_data_augs(cfg.cut_size)

    render = pydiffvg.RenderFunction.apply

    # initialize shape
    print('initializing shape')
    shapes, shape_groups, parameters = init_shapes(svg_path=cfg.target, trainable=cfg.trainable)

    scene_args = pydiffvg.RenderFunction.serialize_scene(w, h, shapes, shape_groups)
    img_init = render(w, h, 2, 2, 0, None, *scene_args)
    img_init = img_init[:, :, 3:4] * img_init[:, :, :3] + \
               torch.ones(img_init.shape[0], img_init.shape[1], 3, device=device) * (1 - img_init[:, :, 3:4])
    img_init = img_init[:, :, :3]

    tone_loss = ToneLoss(cfg)
    tone_loss.set_image_init(img_init)

    num_iter = cfg.num_iter
    pg = [{'params': parameters["point"], 'lr': cfg.lr_base["point"]}]
    optim = torch.optim.Adam(pg, betas=(0.9, 0.9), eps=1e-6)

    conformal_loss = ConformalLoss(parameters, device, cfg.optimized_letter, shape_groups)

    lr_lambda = lambda step: learning_rate_decay(step, cfg.lr.lr_init, cfg.lr.lr_final, num_iter,
                                                 lr_delay_steps=cfg.lr.lr_delay_steps,
                                                 lr_delay_mult=cfg.lr.lr_delay_mult) / cfg.lr.lr_init

    scheduler = LambdaLR(optim, lr_lambda=lr_lambda, last_epoch=-1)  # lr.base * lrlambda_f

    print("start training")
    # training loop
    t_range = tqdm(range(num_iter))
    for step in t_range:
        optim.zero_grad()

        # render image
        scene_args = pydiffvg.RenderFunction.serialize_scene(w, h, shapes, shape_groups)
        img = render(w, h, 2, 2, step, None, *scene_args)

        # compose image with white background
        img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=device) * (
                    1 - img[:, :, 3:4])
        img = img[:, :, :3]

        filename = os.path.join(
            cfg.experiment_dir, "video-svg", f"iter{step:04d}.svg")
        check_and_create_dir(filename)
        save_svg.save_svg(filename, w, h, shapes, shape_groups)
        if not example:
            yield gr.update(visible=True),gr.update(value=filename, label=f'iters: {step} / {num_iter}', visible=True),gr.update(visible=False)

        x = img.unsqueeze(0).permute(0, 3, 1, 2)  # HWC -> NCHW
        x = x.repeat(cfg.batch_size, 1, 1, 1)
        x_aug = data_augs.forward(x)

        # compute diffusion loss per pixel
        loss = sds_loss(x_aug)

        tone_loss_res = tone_loss(x, step)
        loss = loss + tone_loss_res

        loss_angles = conformal_loss()
        loss_angles = cfg.loss.conformal.angeles_w * loss_angles
        loss = loss + loss_angles

        loss.backward()
        optim.step()
        scheduler.step()

            
    filename = os.path.join(
        cfg.experiment_dir, "output-svg", "output.svg")
    check_and_create_dir(filename)
    save_svg.save_svg(
        filename, w, h, shapes, shape_groups)

    combine_word(cfg.word, cfg.optimized_letter, cfg.font, cfg.experiment_dir)

    image = os.path.join(cfg.experiment_dir,f"{cfg.font}_{cfg.word}_{cfg.optimized_letter}.svg")
    yield gr.update(value=filename_init,visible=True),gr.update(visible=False),gr.update(value=image,visible=True)
 

with gr.Blocks() as demo:

    gr.HTML(TITLE)
    gr.Markdown(DESCRIPTION)
    
    with gr.Row():
        with gr.Column():

            semantic_concept = gr.Text(
                label='Semantic Concept',
                max_lines=1,
                placeholder=
                'Enter a semantic concept. For example: BUNNY'
            )

            word = gr.Text(
                label='Word',
                max_lines=1,
                placeholder=
                'Enter a word. For example: BUNNY'
            )
           
            letter = gr.Text(
                label='Letter',
                max_lines=1,
                placeholder=
                'Choose a letter in the word to optimize. For example: Y'
            )

            num_steps = gr.Slider(label='Optimization Iterations',
                      minimum=0,
                      maximum=500,
                      step=10,
                      value=500)
            
            font_name = gr.Text(value=None,visible=False,label="Font Name")
        
            
            def on_select(evt: gr.SelectData):
                return evt.value
                
            font_name = "ArefRuqaa.ttf"
          
            run = gr.Button('Generate')

        with gr.Column():
            result0 = gr.Image(type="filepath", label="Initial Word").style(height=333)
            result1 = gr.Image(type="filepath", label="Optimization Process").style(height=110)
            result2 = gr.Image(type="filepath", label="Final Result",visible=False).style(height=333)
            
        
    with gr.Row():
        # examples
        examples = [
            [
            "BUNNY",
            "BUNNY",
            "Y",
            "KaushanScript-Regular",
            500
            ],
            [
            "LION",
            "LION",
            "O",
            "Quicksand",
            500
            ],
            [
            "FROG",
            "FROG",
            "G",
            "IndieFlower-Regular",
            500
            ],
            [
            "CAT",
            "CAT",
            "C",
            "LuckiestGuy-Regular",
            500
            ],
        ]
        demo.queue(max_size=10, concurrency_count=2)
        # gr.Examples(examples=examples,
        #         inputs=[
        #             semantic_concept,
        #             word,
        #             letter, 
        #             font_name,
        #             num_steps
        #         ],
        #         outputs=[
        #             result0,
        #             result1,
        #             result2
        #         ],
        #         fn=run_main_ex,
        #         cache_examples=True)
        
        
    # inputs
    inputs = [
        semantic_concept,
        word,
        letter, 
        font_name,
        num_steps
    ]

    outputs = [
        result0,
        result1,
        result2
    ]
    
    run.click(fn=run_main_app, inputs=inputs, outputs=outputs, queue=True)


demo.launch(share=False)