Badr AlKhamissi
starting space
913d3e3
raw
history blame
6.44 kB
from typing import Mapping
import os
from tqdm import tqdm
from easydict import EasyDict as edict
import matplotlib.pyplot as plt
import torch
from torch.optim.lr_scheduler import LambdaLR
import pydiffvg
import save_svg
from losses import SDSLoss, ToneLoss, ConformalLoss
from config import set_config
from utils import (
check_and_create_dir,
get_data_augs,
save_image,
preprocess,
learning_rate_decay,
combine_word,
create_video)
import wandb
import warnings
warnings.filterwarnings("ignore")
pydiffvg.set_print_timing(False)
gamma = 1.0
def init_shapes(svg_path, trainable: Mapping[str, bool]):
svg = f'{svg_path}.svg'
canvas_width, canvas_height, shapes_init, shape_groups_init = pydiffvg.svg_to_scene(svg)
parameters = edict()
# path points
if trainable.point:
parameters.point = []
for path in shapes_init:
path.points.requires_grad = True
parameters.point.append(path.points)
return shapes_init, shape_groups_init, parameters
if __name__ == "__main__":
cfg = set_config()
# use GPU if available
pydiffvg.set_use_gpu(torch.cuda.is_available())
device = pydiffvg.get_device()
# cfg.word = cfg.word[::-1]
print("preprocessing")
preprocess(cfg.font, cfg.word, cfg.optimized_letter, cfg.level_of_cc)
if cfg.loss.use_sds_loss:
sds_loss = SDSLoss(cfg, device)
h, w = cfg.render_size, cfg.render_size
data_augs = get_data_augs(cfg.cut_size)
render = pydiffvg.RenderFunction.apply
# initialize shape
print('initializing shape')
shapes, shape_groups, parameters = init_shapes(svg_path=cfg.target, trainable=cfg.trainable)
scene_args = pydiffvg.RenderFunction.serialize_scene(w, h, shapes, shape_groups)
img_init = render(w, h, 2, 2, 0, None, *scene_args)
img_init = img_init[:, :, 3:4] * img_init[:, :, :3] + \
torch.ones(img_init.shape[0], img_init.shape[1], 3, device=device) * (1 - img_init[:, :, 3:4])
img_init = img_init[:, :, :3]
if cfg.use_wandb:
plt.imshow(img_init.detach().cpu())
wandb.log({"init": wandb.Image(plt)}, step=0)
plt.close()
if cfg.loss.tone.use_tone_loss:
tone_loss = ToneLoss(cfg)
tone_loss.set_image_init(img_init)
if cfg.save.init:
print('saving init')
filename = os.path.join(
cfg.experiment_dir, "svg-init", "init.svg")
check_and_create_dir(filename)
save_svg.save_svg(filename, w, h, shapes, shape_groups)
num_iter = cfg.num_iter
pg = [{'params': parameters["point"], 'lr': cfg.lr_base["point"]}]
optim = torch.optim.Adam(pg, betas=(0.9, 0.9), eps=1e-6)
if cfg.loss.conformal.use_conformal_loss:
conformal_loss = ConformalLoss(parameters, device, cfg.optimized_letter, shape_groups)
lr_lambda = lambda step: learning_rate_decay(step, cfg.lr.lr_init, cfg.lr.lr_final, num_iter,
lr_delay_steps=cfg.lr.lr_delay_steps,
lr_delay_mult=cfg.lr.lr_delay_mult) / cfg.lr.lr_init
scheduler = LambdaLR(optim, lr_lambda=lr_lambda, last_epoch=-1) # lr.base * lrlambda_f
print("start training")
# training loop
t_range = tqdm(range(num_iter))
for step in t_range:
if cfg.use_wandb:
wandb.log({"learning_rate": optim.param_groups[0]['lr']}, step=step)
optim.zero_grad()
# render image
scene_args = pydiffvg.RenderFunction.serialize_scene(w, h, shapes, shape_groups)
img = render(w, h, 2, 2, step, None, *scene_args)
# compose image with white background
img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=device) * (1 - img[:, :, 3:4])
img = img[:, :, :3]
if cfg.save.video and (step % cfg.save.video_frame_freq == 0 or step == num_iter - 1):
save_image(img, os.path.join(cfg.experiment_dir, "video-png", f"iter{step:04d}.png"), gamma)
filename = os.path.join(
cfg.experiment_dir, "video-svg", f"iter{step:04d}.svg")
check_and_create_dir(filename)
save_svg.save_svg(
filename, w, h, shapes, shape_groups)
if cfg.use_wandb:
plt.imshow(img.detach().cpu())
wandb.log({"img": wandb.Image(plt)}, step=step)
plt.close()
x = img.unsqueeze(0).permute(0, 3, 1, 2) # HWC -> NCHW
x = x.repeat(cfg.batch_size, 1, 1, 1)
x_aug = data_augs.forward(x)
# compute diffusion loss per pixel
loss = sds_loss(x_aug)
if cfg.use_wandb:
wandb.log({"sds_loss": loss.item()}, step=step)
if cfg.loss.tone.use_tone_loss:
tone_loss_res = tone_loss(x, step)
if cfg.use_wandb:
wandb.log({"dist_loss": tone_loss_res}, step=step)
loss = loss + tone_loss_res
if cfg.loss.conformal.use_conformal_loss:
loss_angles = conformal_loss()
loss_angles = cfg.loss.conformal.angeles_w * loss_angles
if cfg.use_wandb:
wandb.log({"loss_angles": loss_angles}, step=step)
loss = loss + loss_angles
t_range.set_postfix({'loss': loss.item()})
loss.backward()
optim.step()
scheduler.step()
filename = os.path.join(
cfg.experiment_dir, "output-svg", "output.svg")
check_and_create_dir(filename)
save_svg.save_svg(
filename, w, h, shapes, shape_groups)
combine_word(cfg.word, cfg.optimized_letter, cfg.font, cfg.experiment_dir)
if cfg.save.image:
filename = os.path.join(
cfg.experiment_dir, "output-png", "output.png")
check_and_create_dir(filename)
imshow = img.detach().cpu()
pydiffvg.imwrite(imshow, filename, gamma=gamma)
if cfg.use_wandb:
plt.imshow(img.detach().cpu())
wandb.log({"img": wandb.Image(plt)}, step=step)
plt.close()
if cfg.save.video:
print("saving video")
create_video(cfg.num_iter, cfg.experiment_dir, cfg.save.video_frame_freq)
if cfg.use_wandb:
wandb.finish()